

PISO-CM100U-D/T

PCM-CM100

User’s Manual

Warranty

All products manufactured by ICP DAS are warranted
against defective materials for a period of one year from
the date of delivery to the original purchaser.

Warning

ICP DAS assume no liability for damages consequent
to the use of this product. ICP DAS reserves the right to
change this manual at any time without notice. The
information furnished by ICP DAS is believed to be
accurate and reliable. However, no responsibility is
assumed by ICP DAS for its use, nor for any infringements
of patents or other rights of third parties resulting from its
use.

Copyright

Copyright 2007 by ICP DAS. All rights are reserved.

Trademark

The names used for identification only maybe
registered trademarks of their respective companies.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 1

Tables of Content

1 General Information..6

1.1 Introduction ..6

1.2 Features..7

1.3 Specifications ..8

1.4 Product Check List ..10

2 Hardware Configuration... 11

2.1 Board Layout.. 11

2.2 Jumper Selection ...13

2.3 Connector Pin Assignment ...15

2.3.1 5-pin screw terminal connector15

2.3.2 9-pin D-sub male connectors ...16

2.3.3 Wire connection ..17

2.4 LED Indicator & Operation Mode..18

2.5 Hardware Installation...19

3 Driver Introduction ...20

3.1 Software Installation..20

3.2 Software Architecture..24

4 APIs for the PC’s Program ...27

4.1 Windows API Definitions and Descriptions...............................27

4.1.1 CM100_GetDllVersion ...31

4.1.2 CM100_GetBoardInf ..32

4.1.3 CM100_TotalBoard ..33

4.1.4 CM100_TotalCM100Board ..33

4.1.5 CM100_TotalDNM100Board ..34

4.1.6 CM100_TotalCPM100Board ..34

4.1.7 CM100_GetCM100BoardSwitchNo.................................35

4.1.8 CM100_GetDNM100BoardSwitchNo36

4.1.9 CM100_GetCPM100BoardSwitchNo37

4.1.10 CM100_GetCardPortNum ...38

4.1.11 CM100_ActiveBoard..39

4.1.12 CM100_CloseBoard...40

4.1.13 CM100_BoardIsActive...41

4.1.14 CM100_ AdujstDateTime...42

4.1.15 CM100_Reset ...43

4.1.16 CM100_Init ...44

4.1.17 CM100_HardwareReset...45

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 2

4.1.18 CM100_Check186Mode...46

4.1.19 CM100_Status ..47

4.1.20 CM100_AddCyclicTxMsg ..49

4.1.21 CM100_DeleteCyclicTxMsg ..51

4.1.22 CM100_EnableCyclicTxMsg ...52

4.1.23 CM100_DisableCyclicTxMsg ..53

4.1.24 CM100_OutputByte ...54

4.1.25 CM100_InputByte ..55

4.1.26 CM100_IsTxTimeout..56

4.1.27 CM100_SetSystemMsg ...57

4.1.28 CM100_ClearSoftBuffer <For default firmware>........................58

4.1.29 CM100_ClearBufferStatus <For default firmware>....................59

4.1.30 CM100_ClearDataOverrun <For default firmware>60

4.1.31 CM100_Config <For default firmware>.......................................61

4.1.32 CM100_ConfigWithoutStruct <For default firmware>64

4.1.33 CM100_RxMsgCount <For default firmware>65

4.1.34 CM100_ReceiveMsg <For default firmware>66

4.1.35 CM100_ReceiveWithoutStruct <For default firmware>68

4.1.36 CM100_SendMsg <For default firmware>70

4.1.37 CM100_SendWithoutStruct <For default firmware>..................71

4.1.38 CM100_SJA1000Config <For user-defined firmware>73

4.1.39 CM100_EnableSJA1000 <For user-defined firmware>74

4.1.40 CM100_DisableSJA1000 <For user-defined firmware>75

4.1.41 CM100_DPRAMInttToCM100 <For user-defined firmware>76

4.1.42 CM100_DPRAMWriteByte <For user-defined firmware>77

4.1.43 CM100_DPRAMWriteWord <For user-defined firmware>.............78

4.1.44 CM100_DPRAMWriteDword <For user-defined firmware>79

4.1.45 CM100_DPRAMWriteMultiByte <For user-defined firmware>80

4.1.46 CM100_DPRAMReadByte <For user-defined firmware>81

4.1.47 CM100_DPRAMReadWord <For user-defined firmware>.............82

4.1.48 CM100_DPRAMReadDword <For user-defined firmware>...........83

4.1.49 CM100_DPRAMReadMultiByte <For user-defined firmware>......84

4.1.50 CM100_DPRAMMemset <For user-defined firmware>85

4.1.51 CM100_ReceiveCmd <For user-defined firmware>86

4.1.52 CM100_SendCmd <For user-defined firmware>88

4.1.53 CM100_InstallUserISR <For user-defined firmware>89

4.1.54 CM100_RemoveUserISR <For user-defined firmware>................90

4.2 Windows API Return Codes Troubleshooting...........................91

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 3

5 Functions of Firmware Library ..93

5.1 Firmware Library Definitions and Descriptions93

5.1.1 L1Off ...97

5.1.2 L1On ...97

5.1.3 L2Off ...98

5.1.4 L2On ...98

5.1.5 DPRAMInttToHost ...99

5.1.6 UserDPRAMIrqFunc <must be called once >100

5.1.7 DPRAMWriteByte ..101

5.1.8 DPRAMWriteWord ...102

5.1.9 DPRAMWriteDword ...103

5.1.10 DPRAMWriteMultiByte ..104

5.1.11 DPRAMReadByte...105

5.1.12 DPRAMReadWord ...106

5.1.13 DPRAMReadDword ...107

5.1.14 DPRAMReadMultiByte ..108

5.1.15 DPRAMMemset..109

5.1.16 DPRAMReceiveCmd.. 110

5.1.17 DPRAMSendCmd .. 111

5.1.18 DebugPrint <assist with CM100_DEBUG_MONITOR.EXE>................. 112

5.1.19 GetKbhit <assist with debug cable and 7188xw.exe> 113

5.1.20 Print <assist with debug cable and 7188xw.exe> 114

5.1.21 GetTime .. 115

5.1.22 SetTime .. 116

5.1.23 GetDate .. 117

5.1.24 SetDate ... 118

5.1.25 GetWeekDay .. 119

5.1.26 ReadNVRAM ..120

5.1.27 WriteNVRAM ..121

5.1.28 GetTimeTicks100us...122

5.1.29 GetTimeTicks ...123

5.1.30 DelayMs..124

5.1.31 CM100_InstallUserTimer...125

5.1.32 T_StopWatchXXX series functions126

5.1.33 T_CountDownTimerXXX series functions...................128

5.1.34 CM100_EEPROMReadByte...130

5.1.35 CM100_EEPROMReadMultiByte131

5.1.36 CM100_EEPROMWriteByte...132

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 4

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 5

5.1.37 CM100_EEPROMWriteMultiByte133

5.1.38 UserCANIrqFunc <must be called once>134

5.1.39 SJA1000HardwareReset ...135

5.1.40 SetCANBaud ..136

5.1.41 GetCANBaud..137

5.1.42 SetCANMask ..138

5.1.43 GetCANMask..140

5.1.44 CANConfig ...141

5.1.45 CANConfigBySJA1000Reg ...142

5.1.46 EnableSJA1000..143

5.1.47 DisableSJA1000...143

5.1.48 GetCANStatus..144

5.1.49 ClearDataOverrunStatus...145

5.1.50 SendCANMsg...146

5.1.51 ClearTxSoftBuffer..147

5.1.52 GetCANMsg ...148

5.1.53 ClearRxSoftBuffer ...150

5.1.54 RxMsgCount ..150

5.1.55 ChcekTxStatus ..151

5.1.56 AddCyclicTxMsg ...152

5.1.57 DeleteCyclicTxMsg..154

5.1.58 EnableCyclicTxMsg...155

5.1.59 EnableCyclicTxMsgWithTimes.....................................156

5.1.60 GetRestCyclicTxCnt ..157

5.1.61 DisableCyclicTxMsg..158

5.1.62 ResetCyclicTxBuf..158

5.1.63 SystemHardwareReset ...159

5.1.64 SystemInit ..159

5.1.65 GetLibVer ...160

5.1.66 RefreshWDT...160

5.1.67 UserInitFunc <must be called once> ..161

5.1.68 UserLoopFunc <must be called once>162

5.2 Firmware Library Return Codes Troubleshooting163

6 Application Programming..164

6.1 Windows Programming With Default Firmware164

6.2 Introduction of CANUtility Tool ..173

6.3 Debug Tools for User-defined Firmware Programming..........185

6.4 User-defined Firmware Programming......................................190

1 General Information

1.1 Introduction

The CAN (Controller Area Network) is a serial communication protocol,

which efficiently supports distributed real-time control with a very high level of

security. It is especially suited for networking "intelligent" devices as well as

sensors and actuators within a system or sub-system. In CAN networks, there

is no addressing of subscribers or stations in the conventional sense, but

instead prioritized messages are transmitted. As a stand-alone CAN controller,

The PISO-CM100U/PCM-CM100 represents a powerful and economic

solution. It has an internal 80186 compactable CPU for the complex protocol

interpretations and implementations. Owing to the real-time DOS-like OS,

MiniOS7, the PISO-CM100U/PCM-CM100 can cover most of all time-critical

CAN-based applications, such as self-define CAN protocol, CANopen,

DeviceNet, J1939, and so forth. Therefore, when users develop their projects,

the PISO-CM100U/PCM-CM100 is helpful to handle the process of the CAN

messages, and share the CPU loading of the PC or embedded system.

Besides, the PISO-CM100U/PCM-CM100 allows users designing the firmware

of the PISO-CM100U/ PCM-CM100. Through the library and demos, it is easy

to finish the user-defined firmware to satisfy the users’ requirements.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 6

1.2 Features

 Follow ISO11898-2 specification

 2500Vrms photo-isolation protection on CAN side

 Jumper select 120Ω terminator resistor for CAN bus

 One CAN communication port

 Compatible with CAN specification 2.0 parts A and B

 Provide default baud 10Kbps, 20Kbps, 50Kbps, 125Kbps, 250Kbps,

500Kbps, 800Kbps, and 1Mbps

 Allow user-defined baud

 2048 records reception buffer and 256 records transmission buffer

 Cyclic transmission precision: ±0.5ms precision when cyclic time is

under 10ms , ±1% error when cyclic time exceeds 10ms.

 Provide 5 sets of cyclic transmission.

 Timestamp of CAN message with at least ±1ms precision

 186 compactable CPU inside

 Arrange the inside DPRAM flexibly

 RTC(Real Time Clock) inside

 LED indicators for

 Support the default firmware or the user-defined firmware

 Support firmware update

 VC++, VB, BCB demos and libraries are given

 C/C++ function libraries of firmware side is given

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 7

1.3 Specifications

Model Name PISO-CM100U PCM-CM100

Hardware

CPU 80186, 80 MHz or compatible

SRAM 512 KB

Flash
512 KB (128 KB for system, 384 KB for users’ applications), 64 KB for one sector

(erase unit), 100,000 erase/write cycles

EEPROM
2 KB (1 KB for system information, 15 KB for users’ applications), 40-year data

retention, 1 million erase/write cycles

DPRAM 8 KB (1 kB for system, others for users’ applications)

NVRAM 31 bytes (battery backup, data valid for up to 10 years)

RTC (Real Time

Clock)

Seconds, minutes, hours, date of week, date of month, month and year, valid from

1980 to 2079

Bus Interface

Type Universal PCI, 3.3 V and 5 V, 33 MHz, 32-bit, plug and play PCI-104

Board No. By DIP switch By rotary switch

CAN Interface

Controller NXP SJA1000T with 16 MHz clock

Transceiver NXP 82C250

Channel number 1

Connector
5-pin screwed terminal block or 9-pin male D-Sub due to the

model number
9-pin male D-Sub

Baud Rate (bps) 10 k, 20 k, 50 k, 125 k, 250 k, 500 k, 800 k, 1 M (allow user-defined baud rate)

Isolation 3000 VDC for DC-to-DC, 2500 Vrms for photo-couple

Terminator Resistor Jumper for 120 Ω terminator resistor

LED

LED Indicator Green LED, red LED (in default firmware: green for Tx/Rx, red for Err)

Power

Power Consumption 400 mA @ 5 V

Software

Driver Windows 2K / XP / 7(x32)

Library VB 6.0, VC++ 6.0, BCB 6.0, Delphi 4.0

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 8

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 9

Mechanism

Dimensions (L x W) 138mm x 105mm 90mm x 96mm

Environment

Operating Temp. 0 ~ 60 ℃

Storage Temp. -20 ~ 70 ℃

Humidity 5 ~ 85% RH, non-condensing

1.4 Product Check List

Besides this manual, the package includes the following items:

 PISO-CM100U/PCM-CM100 CAN card

 Software CD ROM

 Quickstart

 One debug cable (model number is 4PCA-0904)

It is recommended that users read the release note first. All the

important information needed will be provided in the release note as

following:
 Where you can find the software driver, utility and demo programs.

 How to install software & utility.

 How to program users’ applications with PISO-CM100U/PCM-CM100.

 The definitions of function library, error code, LED status, and pin

assignment.

 The basic solution of troubleshooting.

Attention !

If any of these items are missing or damaged, please contact your local

field agent. Keep aside the shipping materials and carton in case you want to

ship or store the product in the future.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 10

2 Hardware Configuration

This section describes the hardware settings of the PISO-CM100U/

PCM-CM100. This information includes the wire connection and terminal

resistance configuration for the CAN network. The PISO-CM100U-T layout is

similar with the PISO-CM100U-D. The only difference is the position of CAN

port connector.

2.1 Board Layout

PISO-CM100U-D board layout

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 11

PCM-CM100 board layout

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 12

2.2 Jumper Selection

The following table shows the definition of jumpers or DIP switch. Users

need to refer to the following table to configure the PISO-CM100U-D/T

hardware.

PISO-CM100U：

Jumper Description Status

JP2

The debug port for the user-defined

firmware. Users can connect the

debug port with the PC RS-232 port via

the debug cable.

4-pin connector for JP2

D-Sub 9 pin connector

for PC RS-232 port

JP3

The Flash protection jumper. If users

would like to protect the data of the

Flash. Enable this jumper. In this case,

the firmware can’t be updated from the

utility.

JP3 JP3

Enable Disable

JP4
The 120Ω terminal resistance of the

CAN bus.

JP4 JP4

Enable Disable

SW2

The reset button for into the download

mode. If users would like force the

CAN board into download mode,

enable this jumper to reset the

firmware and let the PISO-CM100U

into the download mode.

SW2

DIP switch

The DIP switch for the PISO-CM100U

board No. If the left-hand-side switch

(bit No. 1) is ON, the board No. is set to

1. The range of the board No. is from 0

to 15. Be careful that the board No. of

each PISO-CM100U, PISO-DNM

100U and PISO-CPM100U in your PC

must be unique.

This situation indicates

the board No. 1.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 13

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 14

PCM-CM100：

Jumper Description Status

JP2

The debug port for the user-defined

firmware. Users can connect the

debug port with the PC RS-232 port via

the debug cable.

4-pin connector for JP2

D-Sub 9 pin connector

for PC RS-232 port

JP5

The Flash protection jumper. If users

would like to protect the data of the

Flash. Enable this jumper. In this case,

the firmware can’t be updated from the

utility.

 JP5 JP5

Enable Disable

JP6
The 120Ω terminal resistance of the

CAN bus.

JP6 JP6

Enable Disable

SW1

The reset button for into the download

mode. If users would like force the

CAN board into download mode,

enable this jumper to reset the

firmware and let the PCM-CM100 into

the download mode.

SW1

RSW1

The rotary switch for the PCM-CM100

board No. and interrupt line. There are

only 4 interrupt lines for the PCI-104

architecture. So, only the value 0 ~ 3

are useful. If users set the rotary switch

to 4 ~ 9, the board No will be 4 ~ 9, but

the interrupt line is still one of the 0 ~ 3.

This situation indicates

the board No. 0.

2.3 Connector Pin Assignment

The PISO-CM100U-T is equipped with one 5-pin screw terminal

connector and the PISO-CM100U-D/PCM-CM100 is equipped with one 9-pin

D-sub male connector for wire connection of the CAN bus. The connector’s

pin assignment is specified as following:

2.3.1 5-pin screw terminal connector

The 5-pin screw terminal connector of the CAN bus interface is shown in

the following figure and table.

Pin No. Signal Description

1 CAN_GND Ground

2 CAN_H CAN_H bus line (dominant high)

3 CAN_SHLD Optional CAN Shield

4 CAN_L CAN_L bus line (dominant low)

5 N/A No use

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 15

2.3.2 9-pin D-sub male connectors

The 9-pin D-sub male connector of the CAN bus interface is shown in the

following figure and table.

Pin No. Signal Description

1 N/A No use

2 CAN_L CAN_L bus line (dominant low)

3 CAN_GND Ground

4 N/A No use

5 CAN_SHLD Optional CAN Shield

6 CAN_GND Ground

7 CAN_H CAN_H bus line (dominant high)

8 N/A No use

9 N/A No use

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 16

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 17

2.3.3 Wire connection

In order to minimize the reflection effects on the CAN bus line, the CAN

bus line has to be terminated at both ends by two terminal resistances as in the

following figure. According to the ISO 11898-2 spec, each terminal resistance

is 120Ω (or between 108Ω~132Ω). The length related resistance should have

70 mΩ/m. Users should check the resistances of the CAN bus, before they

install a new CAN network.

12
0Ω

120Ω

CAN_H

CAN_L

Device NDevice 2Device 1 . . .

Moreover, to minimize the voltage drop over long distances, the terminal

resistance should be higher than the value defined in the ISO 11898-2. The

following table can be used as a good reference.

Bus Cable Parameters

Bus Length

(meter)
Length Related

Resistance

(mΩ/m)

Cross Section

(Type)

Terminal

Resistance

(Ω)

0~40 70 0.25(23AWG)~

0.34mm2(22AWG)

124 (0.1%)

40~300 < 60 0.34(22AWG)~

0.6mm2(20AWG)

127 (0.1%)

300~600 < 40 0.5~0.6mm2

(20AWG)

150~300

600~1K < 20 0.75~0.8mm2

(18AWG)

150~300

2.4 LED Indicator & Operation Mode

The LED status will be changed when PISO-CM100U/PCM-CM100 is in

the different modes. There are three modes, and each mode describes as

follows:

1. Download mode: In this case, the green LED and red LED will be

alternatively flashed once per second. (When the green LED is ON, the

red LED is OFF, and vice versa.). The PISO-CM100U/PCM-CM100 is

ready for updating the firmware from the Utility. Users can use the software

to download the newer default firmware or the user-defined firmware.

2. Firmware mode: If the PISO-CM100U/PCM-CM100 uses default firmware,

the green LED is flashed once as the PISO-CM100U/PCM-CM100

receives or transmits one CAN message to CAN bus successfully. If the

bus loading is heavy, the green LED may be turned on always. If some

error occurs, the red LED is turned on. Users can use CM100_Status()

function to obtain the CAN control status except the buffer status. The

buffer statuses are obtained from the return codes of the transition or

reception functions as users read or send a CAN message. If the

PISO-CM100U/PCM-CM100 runs the user-defined firmware, the actions

of the green LED or red LED can be designed by the user-defined

firmware.

3. Firmware reset mode: If users enable SW2 of the PISO-CM100U or the

SW1 of the PCM-CM100 described in section 2.2, both the red and green

LEDs will be turned on about 1 second, and the PISO-CM100U/

PCM-CM100 is forced to enter the download mode. If the PISO-CM100U/

PCM-CM100 is out of control because of the bugs of the user-defined

firmware or other problems, use this method to reset the firmware and

download the newer firmware again.

Note: The color of the LED 1 and LED2 of the PCM-CM100 are green and red

respectively.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 18

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 19

2.5 Hardware Installation

When users want to use the PISO-CM100U, the hardware installation

needs to be finished as the following steps.

1. Shutdown your personal computer.

2. Configure the DIP switch and the JP4 for the board No. and the terminal

resistor of the PISO-CM100U. The more detail of the switch and jumper

positions can be found at section 2.2.

3. Check the JP3 of the PISO-CM100U. If necessary, enable it.

4. Find an empty PCI slot for the PISO-CM100U on the mother board of the

personal computer. Plug the configured PISO-CM100U into this empty PCI

slot.

5. Plug the CAN bus cable(s) into the 5-pin screw terminal connector or the

9-pin D-sub connector due to the model number of the PISO-CM100U.

After the procedure described above is completed, turn on the PC.

The hardware installation for the PCM-CM100 is shown as the following steps.

1. Shutdown your embedded system.

2. Configure the rotary switch and the JP6 for the board No. and the

terminal resistor of the PCM-CM100. The more detail of the switch and

jumper positions can be found at section 2.2.

3. Check the JP5 of the PCM-CM100. If necessary, enable it.

4. Plug the PCM-CM100 on the top of the PCI-104 slot of your embedded

system. One embedded may have up to 4 PCM-CM100.

5. Plug the CAN bus cable(s) into the 9-pin D-sub connector.

After the procedure described above is completed, turn on the embedded

system.

3 Driver Introduction

3.1 Software Installation

The PISO-CM100U/PCM-CM100 can be used in the Windows 2000/XP

environments. Users need to get the proper driver for their operation system.

These drivers are in the Field Bus CD in the PISO-CM100U/PCM-CM100

package. The path is CAN\PCI\PISO-CM100U. Also, users can find them from

our website as following. (Take a note that the PISO-CM100U and the

PCM-CM100 use the same driver.)

ftp://ftp.icpdas.com/pub/cd/fieldbus_cd/can/pci/piso-cm100u/

The recommended installation procedure is given as below:

Step 1: Shut down your system.

Step 2: Plug your PISO-CM100U/PCM-CM100 into your system.

Step 3: Boot up your system. When system detects a new card and pop up a

wizard dialog for driver installation, cancel this dialog and skip the

procedure of the driver installation.

Step 4: Get the proper PISO-CM100U/PCM-CM100 driver for your operation

system. These drivers can be found in CD of PISO-CM100U/

PCM-CM100 package or on the ICP DAS product webpage.

Step 5: Install the driver and reboot your system. In the following description,

the installation procedure for Windows XP is given for an example.

The installation procedures for other operation systems are similar

with the one for the Windows XP.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 20

ftp://ftp.icpdas.com/pub/cd/fieldbus_cd/can/pci/piso-cm100u/

The driver installation procedure for Window XP is shown as below:

Step1: Execute the driver, piso-cm100_2k_xp.exe, which can be found on the

product CD or the website of the ICP DAS.

Step2: Confirm the driver installation path. This may concern with where the

demos and the utility tool are.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 21

ftp://ftp.icpdas.com/pub/cd/fieldbus_cd/can/pci/piso-cm100u/drivers_for_2000_xp/piso-cm100_2k_xp.exe

Step3: Confirm the name of the shortcut, and click the next button.

Step4: The dialog shows the installation path and the name of the shortcut.

Click the install button to go on the installation.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 22

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 23

Step5: When all procedures are finished, click the finish button and reset the

PC.

3.2 Software Architecture

The basic software architecture of the PISO-CM100U/PCM-CM100 is

shown in the following figure. Users’ programs can communicate with the

firmware of the PISO-CM100U/PCM-CM100 via APIs. The APIs provide

functions for CAN message transmission or reception, DPRAM access, the

RTC adjustment and the user-defined firmware communication. Users can

apply the default firmware to access the CAN network as a normal CAN card,

or program the user-defined firmware to handle the CAN application protocols

and process the algorisms as an intelligent CAN card.

The PISO-CM100U/PCM-CM100 provides the flexibility to design the

special firmware to fit the users’ applications. Users can use the utility to

download the firmware which will be run on the PISO-CM100U/PCM-CM100.

The default firmware offers the functions to access the CAN network as a

normal CAN board. Through the firmware, users can configure the CAN

controller, get the status of the CAN controller, send/receive the CAN

messages to/from the CAN bus and send the CAN messages with cyclic

transmission engine. These functions are helpful to reach the purposes of bus

monitor, bus access, network debugging, basic network set up … and etc.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 24

When using the default firmware, users can only use the APIs which are for the

default firmware. The information about what APIs can be used for the default

firmware is described in the section 4.1. The software architecture is shown

below.

If users’ applications need to handle a lot of HMI interfaces or the complex

CAN application protocols are applied, it is a good solution to design the

special firmware to process the CAN messages. The raw CAN messages can

be interpreted by the default firmware, and only the useful data are passed to

the users’ program of the PC. The CPU of the PC can concentrate on the HMI

update, control command implementation, and data-exchange with other

devices. Through this method, the CAN-related tasks are done by the

user-defined firmware of the PISO-CM100U/PCM-CM100, and the CPU

loading of the PC can be effectively shared by the CPU of the

PISO-CM100U/PCM-CM100. This software architecture provides the features

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 25

of the real-time execution, high performance and efficiently reducing the PC

CPU loading. The software architecture is shown below.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 26

4 APIs for the PC’s Program

In this chapter, the APIs for both default firmware and user-defined

firmware are described. The content includes the CM100.dll APIs introductions,

error code description and the simple method for troubleshooting. It is helpful

to develop the users’ applications. The section 4.1 shows the list and

information of all APIs supported by CM100.dll, and the section 4.2 shows the

explication of the return codes of the API functions.

4.1 Windows API Definitions and Descriptions

All the functions provided by the CM100.dll are listed in the following table

and the detailed information for each function presented in the following

sub-section.

Function definition Page Note

WORD CM100_GetDllVersion(void) 31 ○△

Int CM100_GetBoardInf(BYTE BoardNo, DWORD *dwVID, DWORD *dwDID,

DWORD *dwSVID, DWORD *dwSDID,

DWORD *dwSAuxID, DWORD *dwIrqNo)

32

○△

Int CM100_TotalBoard(void) 33 ○△

Int CM100_TotalCM100Board(void) 33 ○△

Int CM100_TotalDNM100Board(void) 34 ○△

Int CM100_TotalCPM100Board(void) 34 ○△

Int CM100_GetCM100BoardSwitchNo(BYTE BoardCntNo,

BYTE *BoardSwitchNo)
35

○△

Int CM100_GetDNM100BoardSwitchNo(BYTE BoardCntNo,

BYTE *BoardSwitchNo)
36

○△

Int CM100_GetCPM100BoardSwitchNo(BYTE BoardCntNo,

BYTE *BoardSwitchNo)
37

○△

Int CM100_GetCardPortNum(BYTE BoardNo, BYTE *bGetPortNum) 38 ○△

Int CM100_ActiveBoard(BYTE BoardNo) 39 ○△

Int CM100_CloseBoard(BYTE BoardNo) 40 ○△

int CM100_BoardIsActive(BYTE BoardNo) 41 ○△

int CM100_AdujstDateTime(BYTE BoardNo) 42 ○△

int CM100_Reset(BYTE BoardNo, BYTE Port) 43 ○△

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 27

Function definition Page Note

int CM100_Init(BYTE BoardNo, BYTE Port) 44 ○△

int CM100_HardwareReset(BYTE BoardNo, BYTE Port) 45 ○△

int CM100_Check186Mode(BYTE BoardNo, BYTE *Mode) 46 ○△

int CM100_Status(BYTE BoardNo, BYTE Port, BYTE *bStatus) 47 ○△

int CM100_AddCyclicTxMsg(BYTE BoardNo, BYTE Port, BYTE Mode,

DWORD MsgID, BYTE RTR, BYTE DataLen,

BYTE *Data, DWORD TimePeriod,

BYTE *Handle)

49 ○△

int CM100_DeleteCyclicTxMsg(BYTE BoardNo, BYTE Port, BYTE Handle) 51 ○△

int CM100_EnableCyclicTxMsg(BYTE BoardNo, BYTE Port, BYTE Handle) 52 ○△

int CM100_DisableCyclicTxMsg(BYTE BoardNo, BYTE Port, BYTE Handle) 53 ○△

void CM100_OutputByte(BYTE BoardNo, BYTE Port, WORD wOffset,

BYTE bValue)
54

○△

BYTE CM100_InputByte(BYTE BoardNo, BYTE Port, WORD wOffset) 55 ○△

int CM100_IsTxTimeout(BYTE BoardNo, BYTE Port, BYTE *Status) 56 ○△

int CM100_SetSystemMsg(BYTE BoardNo, BYTE Port, BYTE Mode) 57 ○△

int CM100_ClearSoftBuffer(BYTE BoardNo, BYTE Port) 58 ○

int CM100_ClearBufferStatus(BYTE BoardNo, BYTE Port) 59 ○

int CM100_ClearDataOverrun(BYTE BoardNo, BYTE Port) 60 ○

int CM100_Config(BYTE BoardNo, BYTE Port, ConfigStruct *CanConfig) 61 ○

int CM100_ConfigWithoutStruct(BYTE BoardNo, BYTE Port,

DWORD AccCode, DWORD AccMask,

BYTE BaudRate, BYTE BT0,

BYTE BT1)

64 ○

int CM100_RxMsgCount(BYTE BoardNo, BYTE Port) 65 ○

int CM100_ReceiveMsg(BYTE BoardNo, BYTE Port,

PacketStruct *CanPacket)
66 ○

int CM100_ReceiveWithoutStruct(BYTE BoardNo, BYTE Port, BYTE *Mode,

DWORD *MsgID, BYTE *RTR,

BYTE *DataLen, BYTE *Data ,

DWORD *UpperTime ,

DWORD *LowerTime)

68 ○

int CM100_SendMsg(BYTE BoardNo, BYTE Port, PacketStruct *CanPacket) 70 ○

int CM100_SendWithoutStruct(BYTE BoardNo, BYTE Port, BYTE Mode,

DWORD MsgID, BYTE RTR, BYTE DataLen,

BYTE *Data)

71 ○

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 28

Function definition Page Note

int CM100_SJA1000Config(BYTE BoardNo, BYTE Port, DWORD AccCode,

DWORD AccMask, BYTE BaudRate, BYTE BT0,

BYTE BT1)

73

△

int CM100_EnableSJA1000(BYTE BoardNo, BYTE Port) 74 △

int CM100_DisableSJA1000(BYTE BoardNo, BYTE Port) 75 △

int CM100_DPRAMInttToCM100(BYTE BoardNo, BYTE Port, BYTE Data) 76 △

int CM100_DPRAMWriteByte(BYTE BoardNo, BYTE Port, WORD Address,

BYTE Data)
77 △

int CM100_DPRAMWriteWord(BYTE BoardNo, BYTE Port, WORD Address,

WORD Data)
78 △

int CM100_DPRAMWriteDword(BYTE BoardNo, BYTE Port, WORD Address,

DWORD Data)
79 △

int CM100_DPRAMWriteMultiByte(BYTE BoardNo, BYTE Port,

WORD Address, BYTE *Data,

WORD DataNum)

80 △

int CM100_DPRAMReadByte(BYTE BoardNo, BYTE Port, WORD Address,

BYTE *Data)
81 △

int CM100_DPRAMReadWord(BYTE BoardNo, BYTE Port, WORD Address,

WORD *Data)
82 △

int CM100_DPRAMReadDword(BYTE BoardNo, BYTE Port, WORD Address,

DWORD *Data)
83 △

int CM100_DPRAMReadMultiByte(BYTE BoardNo, BYTE Port,

WORD Address, BYTE *Data,

WORD DataNum)

84 △

int CM100_DPRAMMemset(BYTE BoardNo, BYTE Port, WORD Address,

BYTE Data, WORD DataNum)
85 △

int CM100_ReceiveCmd(BYTE BoardNo, BYTE Port, BYTE *Data,

WORD *DataNum)
86 △

int CM100_SendCmd(BYTE BoardNo, BYTE Port, BYTE *Data,

WORD DataNum)
88 △

int CM100_InstallUserISR(BYTE BoardNo, void (*UserISR)(BYTE BoardNo,

BYTE InttValue))
89 △

int CM100_RemoveUserISR(BYTE BoardNo) 90 △

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 29

Note: In table 3.1, the mark ○ and △ indicate the use condition of the API

functions. The function marked with ○ or △ presents that this function

is useful while the default CM100 firmware or the user-defined firmware

is running. If the default firmware is running, all of the functions marked

with ○ could be applied. If users design their firmware by using the

firmware library (firmware library is described in chapter 5), only the

functions marked with △ is useful. The functions marked with ○△ can

be used with default firmware or user-defined firmware.

In order to make the descriptions simpler and clearer, the attributes for the

both of the input and output parameter functions are given as [input] and

[output] respectively, as shown in following table.

Keyword Set parameter by user before

calling this function?

Get the data from this parameter

after calling this function?

[input] Yes No

[output] No Yes

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 30

4.1.1 CM100_GetDllVersion

 Description:

Obtains the version information of the CM100.dll driver.

 Syntax:

WORD CM100_GetDllVersion(void)

 Parameter:

None

 Return:

DLL version information. For example: If the value 100(hex) is return, it

means the driver version is 1.00.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 31

4.1.2 CM100_GetBoardInf

 Description:

This function is used to obtain the information of the PISO-CM100U,

PCM-CM100, PISO-DNM100U or PISO-CPM100U, which includes the

vender ID, the device ID and the interrupt number.

 Syntax:

int CM100_GetBoardInf(BYTE BoardNo, DWORD *dwVID,

DWORD *dwDID, DWORD *dwSVID,

DWORD *dwSDID, DWORD *dwSAuxID,

DWORD *dwIrqNo)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or the rotary switch No.

(0~9) of the PISO-CM100U, PCM-CM100, PISO-DNM100U

or PISO-CPM100U.

*dwVID: [output] The address of a variable which is used to receive the

vendor ID.

*dwDID: [output] The address of a variable used to receive device ID.

*dwSVID: [output] The address of a variable applied to receive

sub-vendor ID.

*dwSDID: [output] The address of a variable applied to receive

sub-device ID.

*dwSAuxID: [output] The address of a variable used to receive

sub-auxiliary ID.

*dwIrqNo: [output] The address of a variable used to receive logical

interrupt number.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 32

4.1.3 CM100_TotalBoard

 Description:

This function is used to obtain the total board number of the

PISO-CM100U, PCM-CM100, PISO-DNM100U, and PISO-CPM100U

boards installed in the PC or embedded system.

 Syntax:

Int CM100_TotalBoard(void)

 Parameter:

None

 Return:

The total scanned board number.

4.1.4 CM100_TotalCM100Board

 Description:

This function is used to obtain the total board number of the

PISO-CM100U/PCM-CM100 installed in the PC or embedded system.

 Syntax:

Int CM100_TotalCM100Board(void)

 Parameter:

None

 Return:

The total scanned PISO-CM100U/PCM-CM100 number.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 33

4.1.5 CM100_TotalDNM100Board

 Description:

This function is used to obtain the total board number of the

PISO-DNM100U installed in the PC.

 Syntax:

Int CM100_TotalDNM100Board(void)

 Parameter:

None

 Return:

The total scanned PISO-DNM100U number.

4.1.6 CM100_TotalCPM100Board

 Description:

This function is used to obtain the total board number of the

PISO-CPM100U plugged in the PC.

 Syntax:

Int CM100_TotalCPM100Board(void)

 Parameter:

None

 Return:

The total scanned PISO-CPM100U number.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 34

4.1.7 CM100_GetCM100BoardSwitchNo

 Description:

Replies the DIP switch No. or rotary switch No. of the

PISO-CM100U/PCM-CM100.

 Syntax:

Int CM100_GetCM100BoardSwitchNo(BYTE BoardCntNo,

BYTE *BoardSwitchNo)

 Parameter:

BoardCntNo: [input] The number of specified PISO-CM100U/

PCM-CM100. For example, if it is the first

PISO-CM100U/ PCM-CM100 in the PC, this value is 0.

For second board, this value is 1.

* BoardSwitchNo: [output] The address of a variable used to get the DIP

switch No. or rotary switch No. of the

PISO-CM100U/PCM-CM100.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: The parameter BoardCntNo exceeds the

current total board numbers of the system.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 35

4.1.8 CM100_GetDNM100BoardSwitchNo

 Description:

Replies the DIP switch No. of the PISO-DNM100U in the PC.

 Syntax:

Int CM100_GetDNM100BoardSwitchNo(BYTE BoardCntNo,

BYTE *BoardSwitchNo)

 Parameter:

BoardCntNo: [input] The number of specified PISO-DNM100U. For

example, if it is the first PISO-DNM100U in the PC, this

value is 0. For second board, this value is 1.

* BoardSwitchNo: [output] The address of a variable used to get the DIP

switch No. of PISO-DNM100U.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: The parameter Board No. exceeds the

current total scanned board number.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 36

4.1.9 CM100_GetCPM100BoardSwitchNo

 Description:

Replies the DIP switch No. of the PISO-CPM100U in the PC.

 Syntax:

Int CM100_GetCPM100BoardSwitchNo(BYTE BoardCntNo,

BYTE *BoardSwitchNo)

 Parameter:

BoardCntNo: [input] The number of specified PISO-CPM100U. For

example, if it is the first PISO-CPM100U in the PC, this

value is 0. For second board, this value is 1.

* BoardSwitchNo: [output] The address of a variable used to get the DIP

switch No. of PISO-CPM100U.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: The parameter Board No .exceeds the

current total scanned board numbers.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 37

4.1.10 CM100_GetCardPortNum

 Description:

Replies the port number of the PISO-CM100U, PCM-CM100,

PISO-DNM100U, or PISO-CPM100U installed in the PC or embedded

system.

 Syntax:

Int CM100_GetCardPortNum(BYTE BoardNo, BYTE *bGetPortNum)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the PISO-CM100U, PCM-CM100, PISO-DNM100U or

PISO-CPM100U.

* bGetPortNum: [output] The address of a variable used to obtain the

port number of the PISO-CM100U, PCM-CM100,

PISO-DNM100U or PISO-CPM100U.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 38

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 39

4.1.11 CM100_ActiveBoard

 Description:

This function must be called once for activating the board before

using the other functions of the APIs.

 Syntax:

int CM100_ActiveBoard(BYTE BoardNo)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board can not be activated or the driver

file is lost.

4.1.12 CM100_CloseBoard

 Description:

This function must be called once for releasing the system resource

before exiting the user’s application program.

 Syntax:

int CM100_CloseBoard(BYTE BoardNo)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 40

4.1.13 CM100_BoardIsActive

 Description:

Checks if the specific board is active.

 Syntax:

int CM100_BoardIsActive(BYTE BoardNo)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

 Return:

0: the board is not active.

1: the board has been activated.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 41

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 42

4.1.14 CM100_ AdujstDateTime

 Description:

Adjusts the date and time of the PISO-CM100U/PCM-CM100 by

using the system time.

 Syntax:

int CM100_AdujstDateTime(BYTE BoardNo)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_SetDateTimeFailure: Sets the date and time failure.

4.1.15 CM100_Reset

 Description:

Resets the CAN controller of the PISO-CM100U/PCM-CM100.

 Syntax:

int CM100_Reset(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 43

4.1.16 CM100_Init

 Description:

Initiates the CAN controller.

 Syntax:

int CM100_Init(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_ModeError: This board is in download mode, and can’t be

changed to firmware mode.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 44

4.1.17 CM100_HardwareReset

 Description:

Resets the PISO-CM100U/PCM-CM100 hardware, such as CAN

controller, the firmware of the PISO-CM100U/PCM-CM100 and the

DPRAM.

 Syntax:

int CM100_HardwareReset(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_ModeError: This board is in download mode, and can’t be

changed to firmware mode.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 45

4.1.18 CM100_Check186Mode

 Description:

Replies the operation mode of the specified board.

 Syntax:

int CM100_Check186Mode(BYTE BoardNo, BYTE *Mode)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

*Mode: [output] The address of a variable used to get the operation

mode of the PISO-CM100U/PCM-CM100. If this value is 0, the

board is in download mode, and the value 1 is for firmware

mode. If the board is in download mode, it can only update the

firmware. The firmware will not work in this mode. Users can

use the function CM100_Init() to change the mode of the board

into the firmware mode.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_InitError: The PISO-CM100U/PCM-CM100 replies erroneously.

CM100_ModeError: This board is in download mode, and can’t be

changed to firmware mode.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 46

4.1.19 CM100_Status

 Description:

Replies the status of the CAN controller of the specified board.

 Syntax:

int CM100_Status(BYTE BoardNo, BYTE Port, BYTE *bStatus)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

*bStatus: [output] The address of a variable applied to get the status

value of the CAN controller.

Bit interpretation of the bStatus:

Bit NAME VALUE STATUS

1 bus-off
bit 7 Bus Status

0 bus-on

1 error
bit 6 Error Status

0 ok

1 transmit
bit 5 Transmit Status

0 idle

1 receive
bit 4 Receive Status

0 idle

1 complete
bit 3 Transmission Complete Status

0 incomplete

1 release
bit 2 Transmit Buffer Status

0 locked

1 overrun
bit 1 Data Overrun Status

0 absent

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 47

Bit NAME VALUE STATUS

1 full/not empty
bit 0 Receive Buffer Status

0 empty

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 48

4.1.20 CM100_AddCyclicTxMsg

 Description:

Adds a cyclic transmission message into the firmware of the board.

Afterwards, users can use the functions CM100_EnableCyclicTxMsg()

and CM100_DelectCyclicTxMsg() to enable or disable this cyclic

transmission message. The maximum addable number of the

transmission messages is 5. After adding a cyclic transmission

message, the handle for this message will be returned. The less value

of handle indicates the higher priority of the cyclic transmission

messages. If there are two cycle transmission messages need to be

sent at the same time, the higher priority message will be sent first.

 Syntax:

int CM100_AddCyclicTxMsg(BYTE BoardNo, BYTE Port, BYTE Mode,

DWORD MsgID, BYTE RTR,

BYTE DataLen, BYTE *Data,

DWORD TimePeriod,

DWORD TransmitTimes, BYTE *Handle)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Mode: [input] 0 for 11-bit message ID, 1 for 29-bit message ID.

MsgID: [input] The CAN message ID.

RTR: [input] 0 for transmitting the remote-transmit-request message, 1

for transmitting the normal message. As this bit is 1, the

parameter *Data is useless.

DataLen: [input] The data length of the CAN message. The maximum

value is 8.

*Data: [input] The start address of the data array of a CAN message.

The maximum length of the Data array is 8 bytes.

TimePeriod: [input] The time period for the cyclic transmission. This

parameter is formatted by 0.1ms. The minimum value is 5.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 49

TransmitTimes: [input] The transmission times for the cyclic

transmission. After enabling the transmission, the

message will be sent for specified times. If the value of

the parameter is 0, the transmission goes cyclically

until disabling the cyclic transmission.

*Handle: [output] The address of a variable is used to get the handle of

a cyclic transmission. When users would like to enable or

disable the specified transmission, this value is needed.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_SetCyclicMsgFailure: The applied cyclic transmission message

number is more than 5, the parameter time period is less than

5 (0.5ms). or the PISO-CM100U/PCM-CM100 replies

erroneously.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 50

4.1.21 CM100_DeleteCyclicTxMsg

 Description:

Removes the specified cyclic transmission message added by the

function CM100_AddCyclicTxMsg().

 Syntax:

int CM100_DeleteCyclicTxMsg(BYTE BoardNo, BYTE Port,

BYTE Handle)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Handle: [input] The handle of the cyclic transmission message, which is

obtained by the function CM100_AddCyclicTxMsg().

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_SetCyclicMsgFailure: The PISO-CM100U/PCM-CM100 replies

erroneously.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 51

4.1.22 CM100_EnableCyclicTxMsg

 Description:

Enables the cyclic transmission message added by the function

CM100_AddCyclicTxMsg(). After calling this function, the specified

cyclic transmission message will be transmitted.

 Syntax:

int CM100_EnableCyclicTxMsg(BYTE BoardNo, BYTE Port,

BYTE Handle)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Handle: [input] The handle of the cyclic transmission message, which is

obtained by the function CM100_AddCyclicTxMsg().

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_SetCyclicMsgFailure: The PISO-CM100U/PCM-CM100 replies

erroneously.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 52

4.1.23 CM100_DisableCyclicTxMsg

 Description:

Disables the cyclic transmission message enabled by the function

CM100_EnableCyclicTxMsg().

 Syntax:

int CM100_DisableCyclicTxMsg(BYTE BoardNo, BYTE Port,

BYTE Handle)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Handle: [input] The handle of the cyclic transmission message, which is

obtained by the function CM100_AddCyclicTxMsg().

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_SetCyclicMsgFailure: The PISO-CM100U/PCM-CM100 replies

erroneously.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 53

4.1.24 CM100_OutputByte

 Description:

Writes the data to the specified SJA1000 register of the

PISO-CM100U/PCM-CM100.

 Syntax:

void CM100_OutputByte(BYTE BoardNo, BYTE Port, WORD wOffset,

BYTE bValue)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

wOffset: [input] The register address of the SJA1000.

bValue: [input] The value written to the specified register.

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 54

4.1.25 CM100_InputByte

 Description:

Reads the data from the specified SJA1000 register of the

PISO-CM100U/PCM-CM100.

 Syntax:

BYTE CM100_InputByte(BYTE BoardNo, BYTE Port, WORD wOffset)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

wOffset: [input] The register address of the SJA1000.

 Return:

The value read from the specified register.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 55

4.1.26 CM100_IsTxTimeout

 Description:

Checks if the CAN controller successfully sends the CAN message.

 Syntax:

BYTE CM100_IsTxTimeout(BYTE BoardNo, BYTE Port, BYTE* Status)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

*Status: [output] The transmit status. The value 1 means that the CAN

controller can’t successfully send the CAN message to the

network and the value 0 is for no error.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 56

4.1.27 CM100_SetSystemMsg

 Description:

This function is used to determine if the system information of the

firmware of the PISO-CM100U/PCM-CM100 is shown.

 Syntax:

BYTE CM100_SetSystemMsg(BYTE BoardNo, BYTE Port,

BYTE Mode)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Mode: [input] The system information of the firmware is shown through

the debug port of PISO-CM100U/PCM-CM100 as the

value is 1, and the value 0 for disabling the display.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 57

4.1.28 CM100_ClearSoftBuffer <For default firmware>

 Description:

Cleans the software buffer of the PISO-CM100U/PCM-CM100.

After calling this function, all the CAN messages which are not sent yet

will be deleted.

 Syntax:

int CM100_ClearSoftBuffer(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 58

4.1.29 CM100_ClearBufferStatus <For default firmware>

 Description:

Cleans the statuses of the CAN transmission and reception

software buffers. When calling the functions CM100_SendMsg(),

CM100_SendWithoutStruct(), CM100_ReceiveMsg() or

CM100_ReceiveWithoutStuct(), users may get the error code due to the

problems of the CAN message buffers. This function may be needed to

clean the buffer and reset the buffer statuses.

 Syntax:

int CM100_ClearBufferStatus(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 59

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 60

4.1.30 CM100_ClearDataOverrun <For default firmware>

 Description:

Cleans the data overrun status of the SJA1000.

 Syntax:

int CM100_ClearDataOverrun(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

4.1.31 CM100_Config <For default firmware>

 Description:

Configures the baud, message filter of the SJA1000. After calling

this function, the board can start to send/receive CAN messages to/from

the CAN network.

 Syntax:

int CM100_Config(BYTE BoardNo, BYTE Port,

ConfigStruct *CanConfig)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

* CanConfig: [input] The address of a ConfigStruct structure variable

used to configure the PISO-CM100U/PCM-CM100. The

ConfigStruct structure is defined below:

typedef struct{

 BYTE AccCode[4];

 BYTE AccMask[4];

 BYTE BaudRate;

 BYTE BT0,BT1;

} ConfigStruct;

AccCode[4]: Acceptance code of CAN controller.

 AccMask[4]: Acceptance mask of CAN controller.

The AccCode is used to decide which CAN

IDs are accepted by the CAN controller. The

AccMask is used to decide which bit of the

CAN IDs are checked with the AccCode by

the CAN controller. If the bit of AccMask is set

to 0, it means that the bit in the same position

of the CAN IDs need to be checked and the

ID bit value needs to match the bit of

AccCode in the same position.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 61

AccCode and AccMask Definition For 11-bit ID:

AccCode and AccMask Bit Position Filter Target

high byte of the high word bit7~bit0 bit10 ~ bit3 of ID

low byte of the high word bit7~bit5 bit2 ~ bit0 of ID

low byte of the high word bit4 RTR

low byte of the high word bit3~bit0 no use

high byte of the low word bit7~bit0 bit7 ~ bit0 of 1st byte data

low byte of the low word bit7~bit0 bit7 ~ bit0 of 2nd byte data

AccCode and AccMask Definition For 29-bit ID:

AccCode and AccMask Bit Position Filter Target

high byte of the high word bit7~bit0 bit28~ bit21 of ID

low byte of the high word bit7~bit0 bit20 ~ bit13 of ID

high byte of the low word bit7~bit0 bit12 ~ bit5 of ID

low byte of the low word bit7~bit3 bit4 ~ bit0 of ID

low byte of the low word bit2 RTR

low byte of the low word bit1~bit0 no use

Example for 29 bit ID message:

 Array[0] Array[1] Array[2] Array[3]

AccCode : 00h 00h 00h A0h

AccMask : FFh FFh FFh 1Fh

ID bit : bit28~bit21 bit20~bit13 bit12~bit5 bit4~bit0

ID Value : xxxx xxxx xxxx xxxx xxxx xxxx 101x x will be accepted

(Note: The character “x” means the bit value doesn’t care. The character “h” behind the value

means the value is in hex format.)

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 62

BaudRate:

Value Description

0
User-defined baud

(BT0,BT1 are needed)

1 10 k bps

2 20 k bps

3 50 k bps

4 125 k bps

5 250 k bps

6 500 k bps

7 800 k bps

8 1000 k bps

 BT0, BT1: User-defined baud rate (used only if ths

BaudRate is 0). For example, sets the BT0 to

04h and the BT1 to 1Ch, then the CAN

controller is running in 100 kbps baud rate.

For more details about how to set the BT0

and BT1, please refer to the datasheet of the

SJA1000 CAN controller.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_InitError: The PISO-CM100U/PCM-CM100 replies erroneously.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 63

4.1.32 CM100_ConfigWithoutStruct <For default firmware>

 Description:

This function is similar to the function CM100_Config(). The

difference is the input parameters. This function uses non-structure

parameters so that it is easy to be applied in some program

environment, such as VB. About the input parameters of this function,

please refer to the function CM100_Config() for the details.

 Syntax:

int CM100_ConfigWithoutStruct(BYTE BoardNo, BYTE Port,

DWORD AccCode, DWORD AccMask,

BYTE BaudRate, BYTE BT0,

BYTE BT1)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

AccCode: [input] Acceptance code of CAN controller.

AccMask: [input] Acceptance mask of CAN controller.

BaudRate: [input] The baud indicator of CAN controller.

 BT0: [input] User-defined baud.

BT1: [input] User-defined baud.

For more information about these parameters, please refer to the

description of the function CM100_Config().

 Return:

CM100_NoError: OK

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 64

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_InitError: The PISO-CM100U/PCM-CM100 replies erroneously.

4.1.33 CM100_RxMsgCount <For default firmware>

 Description:

Replies the number of CAN messages available in the reception

software buffer.

 Syntax:

int CM100_RxMsgCount(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

 Return:

The number of CAN messages stored in software buffer.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 65

4.1.34 CM100_ReceiveMsg <For default firmware>

 Description:

Gets one message from the reception software buffer. Before using

this function, the CAN controller must be configured by the functions

CM100_Config() or CM100_ConfigWithoutStruct().

 Syntax:

int CM100_ReceiveMsg(BYTE BoardNo, BYTE Port,

PacketStruct *CanPacket)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

*CanPacket: [output] The address of a PacketStruct structure variable

used to get a CAN message. The PacketStruct structure is

defined below:

typedef struct packet{

LONGLONG MsgTimeStamps;

BYTE mode;

DWORD id;

BYTE rtr;

BYTE len;

BYTE data[8];

} PacketStruct;

MsgTimeStamps: As the board gets a CAN message, this

parameter records the time which is

calculated from the boot time of the CPU

of the CAN board. The unit is 0.1 ms.

mode: If the value is 0, the received CAN message is

11-bit-ID CAN message. The 29-bit-ID CAN

message has the value 1

id: The CAN message ID.

rtr: 0 for the remote-transmit-request message, 1 for the

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 66

normal message. As this bit is 1, the parameter data[8]

is useless.

len: The data length of a CAN message. The maximum

length is 8 bytes.

data[8]: The data of a CAN message

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_SoftBufferIsEmpty: There is no CAN message in the reception

software buffer.

CM100_SoftBufferIsFull: Users can still get CAN messages from the

reception software buffer, but the software

buffer is overflow.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 67

4.1.35 CM100_ReceiveWithoutStruct <For default firmware>

 Description:

Replies a received message from the software buffer. This function

is similar to the function CM100_ReceiveMsg(). The difference is that

this function doesn’t use any structure parameter. It is easy to use in

some program environment, such as VB.

 Syntax:

int CM100_ReceiveWithoutStruct(BYTE BoardNo, BYTE Port,

BYTE *Mode, DWORD *MsgID,

BYTE *RTR, BYTE *DataLen,

BYTE *Data , DWORD *UpperTime ,

DWORD *LowerTime)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

*Mode: [output] The address of a variable used to get the mode of a

CAN message. If the value is 0, the received CAN message is

11-bit-ID CAN message. The 29-bit-ID CAN message will have

the value 1.

*MsgID: [output] The address of a variable used to get the CAN

message ID.

*RTR: [output] The address of a variable used to obtain the status of this

CAN message. 0 for the remote-transmit-request message, 1 for

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 68

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 69

the normal message.

*DataLen: [output] The address of a variable used to obtain the data

length of a CAN message. The range of this value is 0~8.

*Data: [output] The start address of a buffer used to get the data of a

CAN message. Users need to put an 8-byte array in this filed.

*UpperTime: [output] The address of a variable used to obtain the

higher 32-bit time stamp of a CAN message.

*LowerTime: [output] The address of a variable used to obtain the lower

32-bit time stamp of a CAN message. The unit of

UpperTime and LowerTime are 0.1ms.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_SoftBufferIsEmpty: There is no CAN message in the reception

software buffer.

CM100_SoftBufferIsFull: Users can still get CAN messages from the

reception software buffer, but the software

buffer is overflow.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

4.1.36 CM100_SendMsg <For default firmware>

 Description:

Sends a CAN message to the software transmission buffer. As the

CAN bus is idle, the CAN message will be sent to the CAN network.

Note that if there are something wrong in the CAN bus wiring and

configuration, the CAN message may not be transmitted successfully. In

this case, users can use the function API CM100_Status to check if any

error is happen.

 Syntax:

int CM100_SendMsg(BYTE BoardNo, BYTE Port,

PacketStruct *CanPacket)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

*CanPacket: [input] The address of a PacketStruct structure variable

used to describe the sent CAN message. About the

definition of PacketStruct, please refer to the description of

the function CM100_ReceiveMsg().

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_SoftBufferIsFull: The transmission software buffer is overflow.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 70

4.1.37 CM100_SendWithoutStruct <For default firmware>

 Description:

Sends a CAN message to the software transmission buffer. As the

CAN bus is idle, the CAN message will be sent to the CAN network.

This function is similar to the function CM100_SendMsg(). The

difference is that this function doesn’t use any structure parameter. It is

easy to use in some program environment, such as VB. Note that if

there are something wrong in the CAN bus wiring and configuration, the

CAN message may not be transmitted successfully. In this case, users

can use the function API CM100_Status to check if any error is happen.

 Syntax:

int CM100_SendWithoutStruct(BYTE BoardNo, BYTE Port, BYTE Mode,

DWORD MsgID, BYTE RTR,

BYTE DataLen, BYTE *Data)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Mode: [input] 0 for 11-bit message ID, 1 for 29-bit message ID.

MsgID: [input] CAN message ID.

RTR: [input] 0 for normal messages, 1 for remote-transmit-request

messages. As the value is 1, the parameter *Data is useless.

DataLen: [input] The data length of a transmitted CAN message. The

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 71

maximum value is 8.

*Data: [input] The start address of a buffer used to store the transmitted

data of a CAN message.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_SoftBufferIsFull: The transmission software buffer is overflow.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 72

4.1.38 CM100_SJA1000Config <For user-defined firmware>

 Description:

Configures the message filter and baud of the SJA1000. About the

input parameters of this function, please refer to the function

CM100_Config() for the details. Note that after using this function to

configure the CAN controller, user must call the function

CM100_EnableSJA1000 to enable the CAN controller and the

configuration.

 Syntax:

int CM100_SJA1000Config(BYTE BoardNo, BYTE Port,

DWORD AccCode, DWORD AccMask,

BYTE BaudRate, BYTE BT0, BYTE BT1)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

AccCode: [input] Acceptance code of CAN controller.

AccMask: [input] Acceptance mask of CAN controller.

BT0: [input] User-defined baud.

BT1: [input] User-defined baud.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_InitError: The PISO-CM100U/PCM-CM100 replies erroneously.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 73

4.1.39 CM100_EnableSJA1000 <For user-defined firmware>

 Description:

After calling the function CM100_SJA1000Config, the CAN

controller is reset. So users must to use this function to enable the CAN

controller.

 Syntax:

int CM100_EnableSJA1000 (BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_InitError: The PISO-CM100U/PCM-CM100 replies erroneously.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 74

4.1.40 CM100_DisableSJA1000 <For user-defined firmware>

 Description:

If the function is used, the CAN controller will be disabled and can’t

receive or send any CAN message until calling the function

CM100_EnableSJA1000.

 Syntax:

int CM100_DisableSJA1000(BYTE BoardNo, BYTE Port)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_TimeOut: The PISO-CM100U/PCM-CM100 has no response.

CM100_InitError: The PISO-CM100U/PCM-CM100 replies erroneously.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 75

4.1.41 CM100_DPRAMInttToCM100 <For user-defined firmware>

 Description:

Sends an interrupt signal to the PISO-CM100U/PCM-CM100. This

interrupt signal is passed to the user-defined firmware, and triggers

some action designed by users. Be careful about that too many interrupt

signals at a short period of time will affect the normal procedure of the

user-defined firmware.

 Syntax:

int CM100_DPRAMInttToCM100(BYTE BoardNo, BYTE Port,

BYTE Data)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Data: [input] The interrupt indicator. The range is 0x00 ~ 0xdf. Users can

define their own interrupt indicator and run the specified tasks

depending on the corresponding interrupt indicators in the

user-defined firmware.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The parameters Data is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 76

4.1.42 CM100_DPRAMWriteByte <For user-defined firmware>

 Description:

Writes one byte data into the specified address of the DPRAM of

the PISO-CM100U/PCM-CM100.

 Syntax:

int CM100_DPRAMWriteByte(BYTE BoardNo, BYTE Port,

WORD Address, BYTE Data)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Address: [input] The specified address of the DPRAM where users want

to write the data to. The legal address range for the DPRAM is

0 ~ 6999.

Data: [input] The byte data written to the DPRAM.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 77

4.1.43 CM100_DPRAMWriteWord <For user-defined firmware>

 Description:

Writes one word data into the specified address of the DPRAM of

the PISO-CM100U/PCM-CM100.

 Syntax:

int CM100_DPRAMWriteWord(BYTE BoardNo, BYTE Port,

WORD Address, WORD Data)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Address: [input] The specified address of the DPRAM where users want

to write the data to. The legal address range for the DPRAM is

0 ~ 6998.

Data: [input] The word data written to the DPRAM.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 78

4.1.44 CM100_DPRAMWriteDword <For user-defined firmware>

 Description:

Writes one double-word data into the specified address of the

DPRAM of the PISO-CM100U/PCM-CM100.

 Syntax:

int CM100_DPRAMWriteDword(BYTE BoardNo, BYTE Port,

WORD Address, DWORD Data)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Address: [input] The specified address of the DPRAM where users want

to write the data to. The legal address range for the DPRAM is

0 ~ 6996.

Data: [input] The double-word data written to the DPRAM.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 79

4.1.45 CM100_DPRAMWriteMultiByte <For user-defined firmware>

 Description:

Writes multi-byte data into the specified address of the DPRAM of

the PISO-CM100U/PCM-CM100.

 Syntax:

int CM100_DPRAMWriteMultiByte(BYTE BoardNo, BYTE Port,

WORD Address, BYTE *Data,

WORD DataNum)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Address: [input] The specified address of the DPRAM where users want

to write the data to. The legal address range is depended on

the parameter DataNum. The sum of the parameters Address

and DataNum can’t exceed the value 6999.

*Data: [input] The start address of a byte array written to the DPRAM.

DataNum: [input] The byte number of an data array written to the

DPRAM.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The sum of the parameters Address and

DataNum is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 80

4.1.46 CM100_DPRAMReadByte <For user-defined firmware>

 Description:

Reads one byte data from the specified address of the DPRAM of

the PISO-CM100U/PCM-CM100.

 Syntax:

int CM100_DPRAMReadByte(BYTE BoardNo, BYTE Port,

WORD Address, BYTE *Data)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Address: [input] The specified address of the DPRAM where users want

to read the data from. The legal address range for the DPRAM

is 0 ~ 6999.

*Data: [output] The address of a variable used to receive the obtained

data of the DPRAM.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 81

4.1.47 CM100_DPRAMReadWord <For user-defined firmware>

 Description:

Reads one word data from the specified address of the DPRAM of

the PISO-CM100U/PCM-CM100.

 Syntax:

int CM100_DPRAMReadWord(BYTE BoardNo, BYTE Port,

WORD Address, WORD *Data)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Address: [input] The specified address of the DPRAM where users want

to read the data from. The legal address range for the DPRAM

is 0 ~ 6998.

*Data: [output] The address of a variable used to receive the obtained

data of the DPRAM.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 82

4.1.48 CM100_DPRAMReadDword <For user-defined firmware>

 Description:

Reads one double-word data from the specified address of the

DPRAM of the PISO-CM100U/PCM-CM100.

 Syntax:

int CM100_DPRAMWriteDword(BYTE BoardNo, BYTE Port,

WORD Address, DWORD *Data)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Address: [input] The specified address of the DPRAM where users want

to read the data from. The legal address range for the DPRAM

is 0 ~ 6996.

*Data: [output] The address of a variable used to receive the obtained

data of the DPRAM.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 83

4.1.49 CM100_DPRAMReadMultiByte <For user-defined firmware>

 Description:

Reads multi-byte data from the specified address of the DPRAM of

the PISO-CM100U/PCM-CM100.

 Syntax:

int CM100_DPRAMReadMultiByte(BYTE BoardNo, BYTE Port,

WORD Address, BYTE *Data,

WORD DataNum)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Address: [input] The specified address of the DPRAM where users want

to read the data from. The legal address range is depended

on the parameter DataNum. The sum of the parameters

Address and DataNum can’t exceed the value 6999.

*Data: [output] The start address of a byte array applied to receive the

obtained data of the DPRAM.

DataNum: [input] The byte number which users want to read from the

DPRAM.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The sum of the parameters Address and

DataNum is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 84

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 85

4.1.50 CM100_DPRAMMemset <For user-defined firmware>

 Description:

Sets multi-byte DPRAM data to be the specified value.

 Syntax:

int CM100_DPRAMMemset(BYTE BoardNo, BYTE Port,

WORD Address, BYTE Data,

WORD DataNum)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

Address: [input] The specified address of the DPRAM where users want

to write the data to. The legal address range is depended on

the parameter DataNum. The sum of the parameters Address

and DataNum can’t exceed the value 6999.

Data: [input] The data written to the DPRAM.

DataNum: [input] The byte number which users want to write to the

DPRAM.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The sum of the parameters Address and

DataNum is out of range.

4.1.51 CM100_ReceiveCmd <For user-defined firmware>

 Description:

Use this function to receive the command transmitted from the

user-defined firmware. After calling the function DPRAMSendCmd() in

the PC program to send a command to the user-defined firmware, call

this function to receive the response from the user-defined firmware. If

users do not receive the response until another response is given from

the user-defined firmware, the former one will be covered by the latter

one. It is strongly recommended to use the polling mechanism in the PC

program and the user-defined firmware, as the following figure.

 Syntax:

int CM100_ReceiveCmd(BYTE BoardNo, BYTE Port, BYTE *Data,

WORD *DataNum)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 86

*Data: [output] The start address of a byte array applied to receive the

command from DPRAM of PISO-CM100U/PCM-CM100.

*DataNum: [output] The address of a variable applied to receive the

command length.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_NoDpramCmd: There is no command transmitted from the

user-defined firmware.

CM100_DpramOverRange: The command length is over 512 bytes.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 87

4.1.52 CM100_SendCmd <For user-defined firmware>

 Description:

Call this function to send the command to the user-defined

firmware. The maximum command length is 512 bytes. Afterwards,

users can use the function DPRAMReceiveCmd() of the firmware library

to get the command, and run the corresponding task in the firmware.

About the function DPRAMReceiveCmd(), please refer to chapter 5 for

the details.

 Syntax:

int CM100_SendCmd(BYTE BoardNo, BYTE Port, BYTE *Data,

WORD DataNum)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

Port: [input] The CAN port No. of the PISO-CM100U/PCM-CM100. This

value is always 1.

*Data: [input] The start address of a byte array of the sent command.

DataNum: [input] The word value indicates the length of the command

sent to the user-defined firmware.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

CM100_PortNumberError: The port number is not correct.

CM100_DpramOverRange: The command length is over 512 bytes.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 88

4.1.53 CM100_InstallUserISR <For user-defined firmware>

 Description:

This function allows users to apply the ISR (interrupt service routine)

to process the reply from the firmware. When users install the ISR by

using this function, the interrupt indicators from the user-defined

firmware can be read in the ISR, and users can immediately run the

tasks in the users’ program depending on the interrupt indicator. The

interrupt indicator, CAN_COMM_CMD_FROM_CM100, defined in

“cm100.h” is also passed to the users’ ISR after calling the function

DPRAMSendCmd in the user-defined firmware.

 Syntax:

int CM100_InstallUserISR(BYTE BoardNo,

void (*UserISR)(BYTE BoardNo, BYTE InttValue))

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

(*UserISR)(BYTE BoardNo, BYTE InttValue)): [input] The pointer which

points a function with format “void XXX(Byte

BoardNo, Byte InttValue)”. The characters XXX are

the function name of the users’ ISR. The parameter

BoardNo of the ISR indicates which board receives

the interrupt indicator, and the parameter InttValue is

the interrupt indictor from the user-defined firmware.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 89

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 90

4.1.54 CM100_RemoveUserISR <For user-defined firmware>

 Description:

When users don’t need the ISR function, call this function to

remove users ISR.

 Syntax:

int CM100_RemoveUserISR(BYTE BoardNo)

 Parameter:

BoardNo: [input] The DIP switch No. (0~15) or rotary switch No. (0~9) of

the board.

 Return:

CM100_NoError: OK

CM100_DriverError: The driver is inactive or no board is in the system.

CM100_BoardNumberError: Can’t find the DIP switch No. or rotary

switch No. of the board to match with the BoardNo.

CM100_ActiveBoardError: This board is not activated.

4.2 Windows API Return Codes Troubleshooting

Return
Code Error ID (Error Description) Troubleshooting

0 CM100_NoError OK

1 CM100_DriverError

1. Reinstall the PISO-CM100U/PCM-CM100
driver correctly.

2. Unplug the PISO-CM100U/PCM-CM100,
and plug it again. Turn on the PC and
check if the board can be found in the list of
the hardware management of the Windows
operation system.

2 CM100_ActiveBoardError

1. Set the parameter BoardNo of the function
to match the DIP switch No. or rotary
switch No. of the board.

2. Turn off all programs which may activate
this board.

3. Check if each CAN board has the unique
DIP switch No. or rotary switch No..

4. Reinstall the PISO-CM100U/PCM-CM100
driver correctly.

5. Unplug the PISO-CM100U/PCM-CM100,
and plug it again. Turn on the PC and
check if the board can be found in the list of
the hardware management of the Windows
operation system.

3 CM100_BoardNumberError

1. Set the parameter BoardNo of the function
to match the DIP switch No. or rotary
switch No. of the board.

2. Check if each CAN board has the unique
DIP switch No. or rotary switch No..

3. Unplug the PISO-CM100U/PCM-CM100,
and plug it again. Turn on the PC and
check if the board can be found in the list of
the hardware management of the Windows
operation system.

4 CM100_PortNumberError
1. Set the Port parameter to 1 if users use the

PISO-CM100U/PCM-CM100 board.

7 CM100_InitError
1. Call the function CM100_Init() and

configure the PISO-CM100U/PCM-CM100
again.

21 CM100_SoftBufferIsEmpty 1. Wait for a while and retry it again.

22 CM100_SoftBufferIsFull
1. Use the function CM100_ClearBufferStatus

to clean the status of buffer overflow.
2. Reduce the CAN bus loading.

23 CM100_TimeOut

1. Check if the users’ program and
user-defined firmware follows the polling
mechanism.

2. Confirm that only one API or thread can
access the board at the same time.

3. Call the function CM100_Init() and
configure the PISO-CM100U/PCM-CM100
again.

4. Push the SW1 or SW2 of the board to force
the board into the download mode. Update

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 91

Return
Code Error ID (Error Description) Troubleshooting

the firmware by using the CAN utility.
5. Confirm if the board is in operation mode,

not in download mode.

24 CM100_SetCyclicMsgFailure

1. Check if 5 cyclic messages are already
used.

2. Call the function CM100_Init() and
configure the PISO-CM100U/PCM-CM100
again.

25 CM100_DpramOverRange
1. Check the value of the parameters Address

or DataNum of the function.

26 CM100_NoDpramCmd 1. Wait for a while and retry it again.

27 CM100_ModeError
1. Push the SW1 or SW2 of the board to force

the board into the download mode. Update
the firmware by using the CAN utility.

30 CM100_NoFileInside
1. Push the SW1 or SW2 of the board to force

the board into the download mode. Update
the firmware by using the CAN utility.

31 CM100_DownloadFailure
1. Close the utility and try to update the

firmware one minute later.
2. Call your distributor to solve this problem

32 CM100_EEPROMDamage 1. Call your distributor to solve this problem

33 CM100_NotEnoughSpace
1. The file size of the user-defined firmware is

too large to put it into the
PISO-CM100U/PCM-CM100.

34 CM100_StillDownloading
1. Close the utility and try to update the

firmware one minute later.
2. Call your distributor to solve this problem

35 CM100_BoardModeError
1. Close the utility and try to update the

firmware one minute later.

36 CM100_SetDateTimeFailure 1. Call your distributor to solve this problem.

X

Transmit one CAN message
successfully, but can’t monitor
this can messages on the CAN
bus.

1. Use the function CM100_Status to check if
any error is happen.

2. Check if the CAN bus line is correctly
connected with the connector of the
PISO-CM100U/PCM-CM100.

3. Check if the baud rate of the
PISO-CM100U/PCM-CM100 is correct.

Note: If users’ problem can’t be fixed after following the recommended

methods. Please contact your distributor or email to

service@icpdas.com to solve the problem.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 92

mailto:service@icpdas.com

5 Functions of Firmware Library

If the default firmware is used, users do not need to read this chapter. This

chapter introduces all the functions provided by the firmware library,

186COMM.lib. The content includes the function introduction, error code

description, and simple method of troubleshooting. The section 5.1 shows the

list and the information of all functions supported by the 186COMM.lib. The

section 5.2 shows how to solve the problem if some error occurs.

5.1 Firmware Library Definitions and Descriptions

The firmware library is needed when designing the user-defined firmware.

In order to reduce the development cycle, the firmware library provides 4

callback functions. If some initial task need to be run, put the codes into the

function UserInitFunc(). The users’ loop procedure can be put in the

UserLoopFunc(). These callback functions are run as soon as possible while

the user-defined firmware boots up. If users would like to process the interrupt

indicators from the DPRAM or CAN controller, use callback functions,

UserDPRAMIrqFunc() and UserCANIrqFunc(). These 4 callback functions

must be applied once in users’ .c file even the content of these functions are

empty. The architecture is show as following figure.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 93

The 186COMM.lib also supports the functions to handle the hardware of the

PISO-CM100U/PCM-CM100, such as the DPRAM, EEPROM, NVRAM, LEDs,

real time clock, timer, debug port, and the CAN interface. Users can use

Borland C/C++ or Turbo C/C++ to compile the user-defined firmware, and the

Turbo C++ 1.01 or Turbo C 2.0 can be free downloaded in the website

http://dn.codegear.com/museum. All the functions are listed in the table 5.1

and the details for every function is presented in the following sub-section.

Function definition Page

void L1Off(void) 97

void L1On(void) 97

void L2Off(void) 98

void L2On(void) 98

void DPRAMInttToHost(char InttValue) 99

void UserDPRAMIrqFunc(unsigned char INTT) 100

int DPRAMWriteByte(unsigned int Address, unsigned char Data) 101

int DPRAMWriteWord(unsigned int Address, unsigned int Data) 102

int DPRAMWriteDword(unsigned int Address, unsigned long Data) 103

int DPRAMWriteMultiByte(unsigned int Address, char *Data, unsigned int DataNum) 104

int DPRAMReadByte(unsigned int Address, unsigned char *Data) 105

int DPRAMReadWord(unsigned int Address, unsigned int *Data) 106

int DPRAMReadDword(unsigned int Address, unsigned long *Data) 107

int DPRAMReadMultiByte(unsigned int Address, char *Data, unsigned int DataNum) 108

int DPRAMMemset(unsigned int Address, char data, unsigned int DataNum) 109

int DPRAMReceiveCmd(char *Data, unsigned int *DataNum) 110

int DPRAMSendCmd(char *Data, unsigned int DataNum) 111

 112

int GetKbhit(void) 113

int Print(const char *fmt, ...) 114

void GetTime(int *hour, int *minute, int *sec) 115

int SetTime(int hour, int minute, int sec) 116

void GetDate(int *year, int *month, int *day) 117

int SetDate(int year, int month, int day) 118

int GetWeekDay(void) 119

int ReadNVRAM(int Address) 120

int WriteNVRAM(int Address, int data) 121

unsigned long GetTimeTicks100us(void) 122

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 94

http://dn.codegear.com/museum

Function definition Page

long GetTimeTicks(void) 123

void DelayMs(unsigned int DelayTime_ms) 124

void CM100_InstallUserTimer(void (*Fun)(void)) 125

void T_StopWatchStart(STOPWATCH *sw) 126

unsigned long T_StopWatchGetTime(STOPWATCH *sw) 126

void T_StopWatchPause(STOPWATCH *sw) 126

void T_StopWatchContinue(STOPWATCH *sw) 126

void T_CountDownTimerStart(COUNTDOWNTIMER *cdt, unsigned long timems) 128

void T_CountDownTimerPause(COUNTDOWNTIMER *cdt) 128

void T_CountDownTimerContinue(COUNTDOWNTIMER *cdt) 128

int T_CountDownTimerIsTimeUp(COUNTDOWNTIMER *cdt) 128

unsigned long T_CountDownTimerGetTimeLeft(COUNTDOWNTIMER *cdt) 128

int CM100_EEPROMReadByte(unsigned int Block, unsigned int Address,

unsigned char *Data)
130

int CM100_EEPROMReadMultiByte(unsigned int Block, unsigned int Address,
char *Data, unsigned int DataNum)

131

int CM100_EEPROMWriteByte(unsigned int Block, unsigned int Address,
unsigned char Data)

132

int CM100_EEPROMWriteMultiByte(unsigned int Block, unsigned int Address,
char *Data, unsigned int DataNum)

133

void UserCANIrqFunc(unsigned char INTT) 134

void SJA1000HardwareReset(void) 135

int SetCANBaud(unsigned long Baud, char BT0, char BT1) 136

void GetCANBaud(unsigned long *Baud, char *BT0, char *BT1) 137

int SetCANMask(long AccCode, long AccMask) 138

void GetCANMask(long *AccCode, long *AccMask) 140

int CANConfig(unsigned long Baud, char BT0, char BT1, long AccMask,
long AccCode)

141

int CANConfigBySJA1000Reg(char BaudType, char BT0, char BT1, char *AccCode,
char *AccMask);

142

void EnableSJA1000(void) 143

void DisableSJA1000(void) 143

int GetCANStatus(void) 144

void ClearDataOverrunStatus(void) 145

int SendCANMsg(char Mode, unsigned long MsgID, char RTR, char DataLen,
char *Data)

146

void ClearTxSoftBuffer(void) 147

int GetCANMsg(char *Mode, unsigned long *MsgID, char *RTR, char *DataLen,
char *Data, unsigned long *UpperTime, unsigned long *LowerTime)

148

void ClearRxSoftBuffer(void) 150

int RxMsgCount(void) 150

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 95

Function definition Page

int CheckTxStatus(void) 151

int AddCyclicTxMsg(char Mode, unsigned long MsgID, char RTR, char DataLen,
char *Data, unsigned long TimePeriod,
unsigned long TransmitTimes, unsigned char *Handle)

152

int DeleteCyclicTxMsg(unsigned char Handle) 154

int EnableCyclicTxMsg(unsigned char Handle) 155

int EnableCyclicTxMsgWithTimes(unsigned char Handle,
unsigned long TransmitTimes)

156

int GetRestCyclicTxCnt(unsigned char Handle, unsigned long *RestTimes) 157

int DisableCyclicTxMsg(unsigned char Handle) 158

void ResetCyclicTxBuf(void) 158

void SystemHardwareReset(void) 159

void SystemInit(void) 159

int GetLibVer(void) 160

void RefreshWDT(void) 160

void UserInitFunc(void) 161

void UserLoopFunc(void) 162

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 96

5.1.1 L1Off

 Description:

Turns off the red LED of the PISO-CM100U/PCM-CM100.

 Syntax:

void L1Off(void)

 Parameter:

None

 Return:

None

5.1.2 L1On

 Description:

Turns on the red LED of the PISO-CM100U/PCM-CM100.

 Syntax:

void L1On(void)

 Parameter:

None

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 97

5.1.3 L2Off

 Description:

Turns off the green LED of the PISO-CM100U/PCM-CM100.

 Syntax:

void L2Off(void)

 Parameter:

None

 Return:

None

5.1.4 L2On

 Description:

Turns on the green LED of the PISO-CM100U/PCM-CM100.

 Syntax:

void L1Off(void)

 Parameter:

None

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 98

5.1.5 DPRAMInttToHost

 Description:

Call this function to signal the users’ program of the PC by an

interrupt. When users’ program of the PC receives the interrupt indicator

from the user-defined firmware, check the value of the indicator to know

the meaning of the interrupt. The user-defined firmware can

communicate with the program of the PC by the pre-definition of the

interrupt indicators. Because of the interrupt mechanism, calling this

function frequently increases the PC CPU loading and disturbs the

normal procedure of the program of the PCs.

 Syntax:

void DPRAMInttToHost(char InttValue)

 Parameter:

InttValue: [input] The interrupt indicator sent to the users’ program of the

PC. The range is 0x00 ~ 0xdf.

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 99

5.1.6 UserDPRAMIrqFunc <must be called once >

 Description:

This is a callback function, and must be call once in the

user-defined firmware. When the firmware library receives an interrupt

indicator from the users’ program of the PC, the interrupt indicator will

be passed to this function. Users can run the proper procedures in this

function to process each interrupt indicator. It is not allowed to put an

infinite loop into this function. Users must keep the program of this

function as short as possible.

 Syntax:

void UserDPRAMIrqFunc(unsigned char INTT)

 Parameter:

INTT: [input] The interrupt indicator from the users’ program of the PC.

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 100

5.1.7 DPRAMWriteByte

 Description:

Writes one byte data into the specified address of the DPRAM of

the PISO-CM100U/PCM-CM100.

 Syntax:

int DPRAMWriteByte(unsigned int Address, unsigned char Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to

write data. The legal address range for the DPRAM is 0 ~

6999.

Data: [input] The byte data written to the DPRAM.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 101

5.1.8 DPRAMWriteWord

 Description:

Writes one word data into the specified address of the DPRAM of

the PISO-CM100U/PCM-CM100.

 Syntax:

int DPRAMWriteWord(unsigned int Address, unsigned int Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to

write data. The legal address range for the DPRAM is 0 ~

6998.

Data: [input] The word data written to the DPRAM.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 102

5.1.9 DPRAMWriteDword

 Description:

Writes one double-word data into the specified address of the

DPRAM of the PISO-CM100U/PCM-CM100.

 Syntax:

int DPRAMWriteDword(unsigned int Address, unsigned long Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to

write data. The legal address range for the DPRAM is 0 ~

6996.

Data: [input] The double-word data written to the DPRAM.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 103

5.1.10 DPRAMWriteMultiByte

 Description:

Writes multi-byte data into the specified address of the DPRAM of

the PISO-CM100U/PCM-CM100.

 Syntax:

int DPRAMWriteMultiByte(unsigned int Address, char *Data,

unsigned int DataNum)

 Parameter:

Address: [input] The specified start address of DPRAM where users

want to write data. The sum of the parameters Address and

DataNum can’t exceed the value 6999.

*Data: [input] The start address of a byte array written to the DPRAM.

DataNum: [input] The byte numbers of an data array written to the

DPRAM.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 104

5.1.11 DPRAMReadByte

 Description:

Reads one byte data from specified the address of the DPRAM of

the PISO-CM100U/PCM-CM100.

 Syntax:

int DPRAMReadByte(unsigned int Address, unsigned char *Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to

read data. The legal address range for the DPRAM is 0 ~

6999.

*Data: [output] The address of a variable used to receive the data from

the DPRAM.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 105

5.1.12 DPRAMReadWord

 Description:

Reads one word data from the specified address of the DPRAM of

the PISO-CM100U/PCM-CM100.

 Syntax:

int DPRAMReadWord(unsigned int Address, unsigned int *Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to

read data. The legal address range for the DPRAM is 0 ~

6998.

*Data: [output] The address of a variable applied to receive the data

from the DPRAM.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 106

5.1.13 DPRAMReadDword

 Description:

Reads one double-word data from the specified address of the

DPRAM of the PISO-CM100U/PCM-CM100.

 Syntax:

int DPRAMReadDword(unsigned int Address, unsigned long *Data)

 Parameter:

Address: [input] The specified address of DPRAM where users want to

read data. The legal address range for the DPRAM is 0 ~

6996.

*Data: [output] The address of a variable applied to receive the data

from the DPRAM.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 107

5.1.14 DPRAMReadMultiByte

 Description:

Writes the multi-byte data into the specified address of the DPRAM

of the PISO-CM100U/PCM-CM100.

 Syntax:

int DPRAMReadMultiByte(unsigned int Address, char *Data,

unsigned int DataNum)

 Parameter:

Address: [input] The specified start address of DPRAM where users

want to read data. The sum of the parameters Address and

DataNum can’t exceed the value 6999.

*Data: [output] The start address of a byte array applied to receive the

data from the DPRAM.

DataNum: [input] The byte numbers which users want to read from the

DPRAM.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The parameter Address is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 108

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 109

5.1.15 DPRAMMemset

 Description:

Sets the multi-byte DPRAM data to be the specified value.

 Syntax:

int DPRAMMemset(unsigned int Address, char data,

unsigned int DataNum)

 Parameter:

Address: [input] The specified start address of DPRAM where users

want to write data. The sum of the parameters Address and

DataNum can’t exceed the value 6999.

Data: [input] The data written to the DPRAM.

DataNum: [input] The byte numbers which users want to write to the

DPRAM.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The parameter Address is out of range.

5.1.16 DPRAMReceiveCmd

 Description:

Use this function to receive the command from the program of the

PC. When users use the function CM100_SendCmd() to a send

command in the program of the PC, call this function to receive the

command from the users’ program. If this function is not called until

another new command comes from the users’ program, the former one

will be covered by the latter one.

 Syntax:

int DPRAMReceiveCmd(char *Data, unsigned int *DataNum)

 Parameter:

*Data: [output] The start address of a byte array is applied to receive the

command data from the DPRAM.

*DataNum: [output] The address of a variable is applied to receive the

command length.

 Return:

_NO_ERR: OK

_NO_DPRAM_CMD: There is no command transmitted from

user-defined firmware.

_DPRAM_OVER_RANGE: The command length is over 512 bytes.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 110

5.1.17 DPRAMSendCmd

 Description:

Call this function to send the command to the program of the PC.

The maximum command length is 512 bytes. Afterwards, users can use

the function CM100_ReceiveCmd() of CM100.dll to get this command.

 Syntax:

int DPRAMSendCmd(char *Data, unsigned int DataNum)

 Parameter:

*Data: [input] The start address of a byte array of a sent command.

DataNum: [input] The word value indicates the length of the command

from the user-defined firmware. The maximum value is 512

bytes.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The command length is out of range.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 111

5.1.18 DebugPrint <assist with CM100_DEBUG_MONITOR.EXE>

 Description:

This function is used to debug the user-defined firmware. Call this

function to send debug the messages from the user-defined firmware to

the CM100_DEBUG_MONITOR.exe. The use method of this function is

similar with the standard C function printf(). When users use this

function, it is necessary to execute the CM100_DEBUG_MONITOR

program and active the PISO-CM100U/PCM-CM100. If the

PISO-CM100U/PCM-CM100 has been activated by other Windows

programs, users don’t need to activate the PISO-CM100U/PCM-CM100

in the CM100_DEBUG_MONITOR.exe again. For the more information

about the CM100_DEBUG_MONITOR, please refer to chapter 6. The

maximum string length can’t be more than 100 bytes.

 Syntax:

int DebugPrint(const char *fmt,...)

 Parameter:

* fmt: [input] The string of the debug information. The maximum length

of *fmt string is 100 bytes. Please refer to the standard C function

printf() to know how to use this parameters. If users need print in

the new line, add “\r\n” in the end of the string of the debug

information.

 Return:

_NO_ERR: OK

_DPRAM_OVER_RANGE: The string of the debug information length is

over 100 bytes.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 112

5.1.19 GetKbhit <assist with debug cable and 7188xw.exe>

 Description:

This function is used to debug the user-defined firmware. Call this

function to get a character keyed from the keyboard. The function

GetKbhit() is similar with the standard C function kbhit(). When users

connect the debug port of the PISO-CM100U/PCM-CM100 with the

available PC RS-232 port via the debug cable shown in the chapter 2

and execute the program 7188xw.exe, any key action to the

7188xw.exe can be caught by this function.

 Syntax:

int GetKbhit(void)

 Parameter:

None

 Return:

The return code is the received character which is keyed in the

7188xw.exe.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 113

5.1.20 Print <assist with debug cable and 7188xw.exe>

 Description:

This function is used to debug the user-defined firmware. Call this

function to send the debug information to the 7188xw.exe. The function

Print() is similar with standard C function printf().When users connect

the debug port of the PISO-CM100U/PCM-CM100 with the available PC

RS-232 port via the debug cable shown in the chapter 2 and execute

the program 7188xw.exe, the debug information sent by this function

will be put to the 7188xw.exe.

 Syntax:

int Print(const char *fmt, ...)

 Parameter:

* fmt: [input] The data format of keyboard input. Please refer to the

standard C function printf() to know how to use this parameters.

 Return:

If it is successful, the return code is a non-zero value.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 114

5.1.21 GetTime

 Description:

Use this function to get the current time from the real time clock.

 Syntax:

void GetTime(int *hour, int *minute, int *sec)

 Parameter:

*hour: [output] The address of a variable used to receive the hour value

of the current time.

*minute: [output] The address of a variable used to receive the minute

value of the current time.

*sec: [output] The address of a variable used to receive the second

value of the current time.

 Return:

None.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 115

5.1.22 SetTime

 Description:

Use this function to modify the time of the real time clock.

 Syntax:

int SetTime(int hour, int minute, int sec)

 Parameter:

hour: [input] The hour value set to the real time clock.

minute: [input] The minute value set to the real time clock.

sec: [input] The second value set to the real time clock.

 Return:

_NO_ERR: OK

_SET_TIME_ERROR: The input value of hour, minute or sec is invalid.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 116

5.1.23 GetDate

 Description:

Use this function to get the current date from the real time clock.

 Syntax:

void GetDate(int *year, int *month, int *day)

 Parameter:

*year: [output] The address of a variable used to receive the year value

of the current date.

*month: [output] The address of a variable used to receive the month

value of the current date.

*day: [output] The address of a variable used to receive the day value of

the current date.

 Return:

None.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 117

5.1.24 SetDate

 Description:

Use this function to modify the date of the real time clock.

 Syntax:

int SetDate(int year, int month, int day)

 Parameter:

year: [input] The year value set to the real time clock.

month: [input] The month value set to the real time clock.

day: [input] The day value set to the real time clock.

 Return:

_NO_ERR: OK

_SET_DATE_ERROR: The input value of year, month or day is invalid.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 118

5.1.25 GetWeekDay

 Description:

Use this function to obtain what day is today.

 Syntax:

int GetWeekDay(void)

 Parameter:

None.

 Return:

Return Code Meaning

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 119

5.1.26 ReadNVRAM

 Description:

Use this function to get one-byte data of the NVRAM.

 Syntax:

int ReadNVRAM(int Address)

 Parameter:

Address: [input] The NVRAM address where users want to read the

data. The range of this parameter is 0 ~ 30.

 Return:

_ACCESS_NVRAM_FAILE: The address of NVRAM is invalid.

Others: The value obtained from the NVRAM. The range of return value

is 0 ~ 255.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 120

5.1.27 WriteNVRAM

 Description:

Use this function to write one-byte data to specified address of the

NVRAM. If the system has no power, the data stored in the NVRAM will

not disappear until the Li battery is dead.

 Syntax:

int WriteNVRAM(int Address, int data)

 Parameter:

Address: [input] The NVRAM address where users want to write the

data to. The range of this parameter is 0 ~ 30.

data: [input] The data written to the NVRAM. The range of this

parameter is 0 ~ 255. If value is over 255, only low byte of data will

be written to the NVRAM.

 Return:

_NO_ERR: OK.

_ACCESS_NVRAM_FAILE: The address of the NVRAM is invalid.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 121

5.1.28 GetTimeTicks100us

 Description:

Read the time ticks of the PISO-CM100U/PCM-CM100 by using

this function. While the board is powered, the time ticks start to be

counted. Firmware reset will clean the accumulated counters of this

value. If the accumulated counter is over 0xFFFFFFFF, it starts from the

value 0.

 Syntax:

unsigned long GetTimeTicks100us(void)

 Parameter:

None.

 Return:

The time ticks value calculated as the firmware starts. The unit is 0.1

ms.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 122

5.1.29 GetTimeTicks

 Description:

Call this function to read PISO-CM100U/PCM-CM100 time ticks.

While the board is powered, the time ticks start to be counted. This

function can’t be called in the interrupt service routine. If the

accumulated counter is over 0xFFFFFFFF, it starts from the value 0.

 Syntax:

long GetTimeTicks(void)

 Parameter:

None

 Return:

The time ticks value calculated as the firmware starts. The unit is 1 ms.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 123

5.1.30 DelayMs

 Description:

Use this function to delay some time for the procedure of the

user-defined firmware. Because of the watchdog mechanism, users

can’t delay for a long time. The watchdog is trigged every 800 ms. It is

recommend that if users want to delay the procedure of the user-defined

firmware more than 500 ms. The function RefreshWDT() must be

applied to avoid the watchdog timeout. This function is not allowed to

put in the interrupt service routine. If users want to use delay functions

in interrupt service routine, it is strongly recommended to move this part

of the codes from the interrupt service routine into the UserLoopFunc().

 Syntax:

void DelayMs(unsigned int DelayTime_ms)

 Parameter:

DelayTime_ms: [input] The delay time. The unit is 1 ms.

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 124

5.1.31 CM100_InstallUserTimer

 Description:

This function offers the timer interrupt. When users put their timer

interrupt service routine in this function, this interrupt service routine will

be executed every predefined period. Be careful that too many codes in

the interrupt service routine will disturb the normal procedure of the

user-defined firmware.

 Syntax:

void CM100_InstallUserTimer(void (*Fun)(void))

 Parameter:

(*Fun)(void): [input] The pointer which points a function with format “void

XXX(void)”. The characters XXX are the name of the

users’ interrupt service routine.

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 125

5.1.32 T_StopWatchXXX series functions

 Description:

Call this function to use a stopwatch. There are 4 functions for the

stopwatch operations. When users want to start a stopwatch,

T_StopWatchStart() must be applied. Afterwards, users can use the

function T_StopWatchGetTime() to get the current time counted by this

stopwatch. If users want to stop time counting, use the function

T_StopWatchPause(). Calling the fucntion T_StopWatchContinue() can

enable this timer again. If users want to use more than one stopwatch,

just input the different structure variable STOPWATCH to these 4

functions. One structure variable is mapped to one stopwatch. The time

unit of these 4 functions and the members of the STOPWATCH

structure are millisecond.

 Syntax:

void T_StopWatchStart(STOPWATCH *sw)

unsigned long T_StopWatchGetTime(STOPWATCH *sw)

void T_StopWatchPause(STOPWATCH *sw)

void T_StopWatchContinue(STOPWATCH *sw)

 Parameter:

*sw: [output] The address of a STOPWATCH structure variable applied

to describe the stopwatch. The member of the STOPWATCH

structure is shown as following:

typedef struct {

 unsigned long ulStart;

 unsigned long ulPauseTime;

 unsigned int uMode;

}STOPWATCH;

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 126

The parameter ulStart shows the start time of stopwatch. The

parameter ulPauseTime returns the time as the stopwatch is

paused. The parameter uMode returns the status of the

stopwatch. If uMode is 0, the stopwatch is paused. If uMode is 1,

the stopwatch is running.

 Return:

The return code of the function T_StopWatchGetTime() is the current

time count after the stopwatch started.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 127

5.1.33 T_CountDownTimerXXX series functions

 Description:

Call this function to use a countdown timer. There are 5 functions

for the countdown timer operations. When users want to start a

countdown timer, the function T_CountDownTimerStart() must be

applied. Afterwards, If users want to stop the countdown timer, use the

function T_CountDownTimerPause(). Calling the function

T_CountDownTimerContinue() can enable this countdown timer again.

Users can use the function T_CountDownTimerIsTimeUp() to check if

the countdown timer is timeout or not. Or, use the fucntion

T_CountDownTimerGetTimeLeft() to obtain the rest time of the

countdown timer. If users want to use more than one countdown timer,

just input the different structure variable COUNTDOWNTIMER to these

5 functions. One structure variable is mapped to one countdown timer.

The time unit of these 5 functions and the members of the

COUNTDOWNTIMER structure are millisecond.

 Syntax:

void T_CountDownTimerStart(COUNTDOWNTIMER *cdt,

unsigned long timems)

void T_CountDownTimerPause(COUNTDOWNTIMER *cdt)

void T_CountDownTimerContinue(COUNTDOWNTIMER *cdt)

int T_CountDownTimerIsTimeUp(COUNTDOWNTIMER *cdt)

unsigned long T_CountDownTimerGetTimeLeft(

COUNTDOWNTIMER *cdt)

 Parameter:

timems: [input] The time interval which indicates that how much time the

countdown timer to count down.

*cdt: [output] The address of a COUNTDOWNTIMER structure variable

used to describe the countdown timer. The member of the

COUNTDOWNTIMER structure is shown as following:

typedef struct {

unsigned long ulTime;

unsigned long ulStartTime;

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 128

unsigned long ulPauseTime;

unsigned int uMode;

} COUNTDOWNTIMER;

The parameter ulTime is the time interval of the countdown timer.

The parameter ulStartTime returns the start time of the

countdown timer. The parameter ulPauseTime obtains the time

as the countdown timer is paused. The parameter uMode returns

the status of the countdown timer. If uMode is 0, it means that the

countdown timer is stopped. If uMode is 1, the countdown timer

is running.

 Return:

The return code of the T_CountDownTimerIsTimeUp() is _NO_ERR or

_COUNT_DOWN_TIMER_TIME_UP. If the countdown timer is timeout,

the return code is _COUNT_DOWN_TIMER_TIME_UP. If not, the

return code is _NO_ERR. The return code of the

T_CountDownTimerGetTimeLeft() is the rest time of the countdown

timer.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 129

5.1.34 CM100_EEPROMReadByte

 Description:

Use this function to read the data of the specified address of the

EEPROM.

 Syntax:

int CM100_EEPROMReadByte(unsigned int Block,

unsigned int Address,

unsigned char *Data)

 Parameter:

Block: [input] The EEPROM block No.. The range is 0 ~ 6.

Address: [input] The EEPROM address where users want to read the

data from. Each block has 256 bytes. Therefore, the range of

this parameter is 0 ~ 255.

*data: [output] The address of a variable used to obtain the data of

specified address of the EEPROM

 Return:

_NO_ERR: OK.

_EEPROM_OVER_RANGE: The parameter Block is over 6, or the

parameter Address is over 255.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 130

5.1.35 CM100_EEPROMReadMultiByte

 Description:

Use this function to read some data from the EEPROM.

 Syntax:

int CM100_EEPROMReadMultiByte(unsigned int Block,

unsigned int Address,

char *Data,

unsigned int DataNum)

 Parameter:

Block: [input] The EEPROM block No.. The range is 0 ~ 6.

Address: [input] The start EEPROM address where users want to write

the data to. Each block has 256 bytes. Therefore, the range of

this parameter is 0 ~ 255.

*data: [output] The start address of a byte array used to receive the data

from the EEPROM

DataNum: [input] The parameter indicates that how many data users

want to obtain.

 Return:

_NO_ERR: OK.

_EEPROM_OVER_RANGE: The parameter Block is over 6, the

parameter Address is over 256, or the specified range of

reading data is over the block 6 and address 255.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 131

5.1.36 CM100_EEPROMWriteByte

 Description:

Use this function to write the data to the specified address of the

EEPROM. If the system has no power, the data stored in EEPROM will

not disappear, but the EEPROM has the limitation for erase or write

cycles. The data which need to frequently write to memory is not proper

to be used in the EEPROM.

 Syntax:

int CM100_EEPROMWriteByte(unsigned int Block,

unsigned int Address,

unsigned char Data)

 Parameter:

Block: [input] The EEPROM block No.. The range is from 0 to 6.

Address: [input] The EEPROM address where users want to write the

data to. Each block has 256 bytes. Therefore, the range of this

parameter is 0 ~ 255.

data: [input] The data written to the EEPROM

 Return:

_NO_ERR: OK.

_EEPROM_ACCESS_ERROR: Can’t write data to the specified

EEPROM address. The EEPROM may be damaged.

_EEPROM_OVER_RANGE: The block No. is over 6, or the address is

over 256.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 132

5.1.37 CM100_EEPROMWriteMultiByte

 Description:

Use this function to write some data to specified address of

EEPROM. If the system has no power, the data stored in EEPROM will

not disappear, but the EEPROM has the limitation for erase or write

cycles. The data which need to frequently write to memory is not proper

to be used in the EEPROM.

 Syntax:

int CM100_EEPROMWriteMultiByte(unsigned int Block,

unsigned int Address,

char *Data,

unsigned int DataNum)

 Parameter:

Block: [input] The EEPROM block No.. The range is from 0 to 6.

Address: [input] The EEPROM address where users want to write the

data to. Each block has 256 bytes. Therefore, the range of this

parameter is 0 ~ 255.

*data: [output] The start address of a byte array used to store the data

written to the EEPROM.

DataNum: [input] The parameter indicates that how many data users

want to write.

 Return:

_NO_ERR: OK.

_EEPROM_ACCESS_ERROR: Can’t write data to specified EEPROM

address. The EEPROM may be damaged.

_EEPROM_OVER_RANGE: The parameter Block is over 6, the

parameter Address is over 256, or the specified range of

writing data is over the block 6 and address 255.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 133

5.1.38 UserCANIrqFunc <must be called once>

 Description:

This is a callback function, and must be call once in the

user-defined firmware. When the firmware library receives an interrupt

signal from the CAN controller, this function will be called. The interrupt

indicator which shows what kind of the CAN controller interrupt is

activated is passed to this function. Users are able to design their

interrupt routine according to the corresponding interrupt indicators. It is

not allowed to put an infinite loop in to this function, and users must

keep the codes of this function as short as possible.

 Syntax:

void UserCANIrqFunc(unsigned char INTT)

 Parameter:

INTT: [input] The interrupt indicator from the CAN controller. The

meanings of the indicators are shown below.

Indicator (Hex) Meaning

0x01 Receive a message successfully

0x02 Transmit a message successfully

0x04 Error warring

0x08 Data Overrun

0x10 CAN controller wake-up

0x20 Bus Passive

0x40 Arbitration Lost

0x80 Bus Error

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 134

5.1.39 SJA1000HardwareReset

 Description:

Resets the CAN controller by the reset pin of SJA1000. After calling

this function, users must configure the baud and message filter of the

CAN controller. Then, use EnableSJA1000() to activate the SJA1000 to

send and receive CAN messages.

 Syntax:

void SJA1000HardwareReset(void)

 Parameter:

None

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 135

5.1.40 SetCANBaud

 Description:

Sets the CAN baud of the CAN controller.

 Syntax:

int SetCANBaud(unsigned long Baud, char BT0, char BT1)

 Parameter:

Baud: [input] The baud of the CAN controller. There are 12 kinds of

predefined baud, 5 k, 10 k, 20 k, 25 k, 50 k, 100 k, 125 k, 200 k,

250 k, 500 k, 800 k, and 1 M bps. If these bauds cannot satisfy

users, set this parameter 12 and define the BT0 and BT1 of the

SJA1000.
Value Description

0 5 k bps
1 10 k bps
2 20 k bps
3 25 k bps
4 50 k bps
5 100 k bps
6 125 k bps
7 200 k bps
8 250 k bps
9 500 k bps

10 800 k bps
11 1000 k bps

others The user-defined baud (The BT0 and BT1 are needed)

BT0: [input] The user-defined baud.

BT1: [input] The user-defined baud. For the more information about how

to set the BT0 and BT1, please refer to the datasheet of the

SJA1000.

 Return:

_NO_ERR: OK.

_CAN_CHIP_SOFT_RESET_ERR: The SJA1000 can’t be reset by the

software. The CAN controller may be damaged.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 136

5.1.41 GetCANBaud

 Description:

Gets the current CAN baud of the CAN controller.

 Syntax:

void GetCANBaud(unsigned long *Baud, char *BT0, char *BT1)

 Parameter:

*Baud: [output] The address of a variable used to obtain the baud of the

CAN controller. If this parameter is more than 12, the BT0 and

BT1 are useful. Please refer to the function SetCANBaud() for

the details.

*BT0: [output] The address of a variable used to get the BT0 value

obtained from the SJA1000.

*BT1: [output] The address of a variable used to get the BT1 value

obtained from the SJA1000. For more information about how to

use the BT0 and BT1, please refer to the datasheet of the

SJA1000.

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 137

5.1.42 SetCANMask

 Description:

Sets the message filter of the CAN controller.

 Syntax:

int SetCANMask(long AccCode, long AccMask)

 Parameter:

AccCode: [input] Acceptance code of CAN controller

AccMask: [input] Acceptance mask of CAN controller.

The AccCode is used to decide which CAN IDs are accepted

by the CAN controller. The AccMask is used to decide which

bit of the CAN IDs are checked with the AccCode by the CAN

controller. If the bit of AccMask is set to 0, it means that the

bit in the same position of the CAN IDs need to be checked

and the ID bit value needs to match the bit of AccCode in the

same position.

AccCode and AccMask Definition For 11-bit ID:

AccCode and AccMask Bit Position Filter Target

high byte of the high word bit7~bit0 bit10 ~ bit3 of ID

low byte of the high word bit7~bit5 bit2 ~ bit0 of ID

low byte of the high word bit4 RTR

low byte of the high word bit3~bit0 no use

high byte of the low word bit7~bit0 bit7 ~ bit0 of 1st byte data

low byte of the low word bit7~bit0 bit7 ~ bit0 of 2nd byte data

AccCode and AccMask Definition For 29-bit ID:

AccCode and AccMask Bit Position Filter Target

high byte of the high word bit7~bit0 bit28~ bit21 of ID

low byte of the high word bit7~bit0 bit20 ~ bit13 of ID

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 138

high byte of the low word bit7~bit0 bit12 ~ bit5 of ID

low byte of the low word bit7~bit3 bit4 ~ bit0 of ID

low byte of the low word bit2 RTR

low byte of the low word bit1~bit0 no use

Example for 29 bit ID message:

 Array[0] Array[1] Array[2] Array[3]

AccCode : 00h 00h 00h A0h

AccMask : FFh FFh FFh 1Fh

ID bit : bit28~bit21 bit20~bit13 bit12~bit5 bit4~bit0

ID Value : xxxx xxxx xxxx xxxx xxxx xxxx 101x x will be accepted

(Note: The character “x” means the bit value doesn’t care. The character “h” behind the value

means the value is in hex format.)

 Return:

_NO_ERR: OK.

_CAN_CHIP_SOFT_RESET_ERR: The SJA1000 can’t be reset by the

software. The CAN controller may be damaged.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 139

5.1.43 GetCANMask

 Description:

Gets the current message filter configuration of the CAN controller.

 Syntax:

void GetCANMask(long *AccCode, long *AccMask)

 Parameter:

* AccCode: [output] The address of a variable used to obtain the

acceptance code of SJA1000.

* AccMask: [output] The address of a variable used to obtain the

acceptance mask of SJA1000.

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 140

5.1.44 CANConfig

 Description:

Configures the baud, message filter of the CAN controller. After

calling this function, users need to call the EnableSJA1000() to active

the CAN controller.

 Syntax:

int CANConfig(unsigned long Baud, char BT0, char BT1, long AccMask,

long AccCode)

 Parameter:

Baud: [input] The baud of CAN controller.

 BT0: [input] The user-defined baud.

BT1: [input] The user-defined baud.

AccCode: [input] The acceptance code of the CAN controller.

AccMask: [input] The acceptance mask of the CAN controller.

For the more information about these parameters, please

refer to the functions SetCANBaud() and SetCANMask().

 Return:

_NO_ERR: OK.

_CAN_CHIP_SOFT_RESET_ERR: The SJA1000 can’t be reset by the

software. The CAN controller may be damaged.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 141

5.1.45 CANConfigBySJA1000Reg

 Description:

This function is similar to the function CANConfig. The difference is

the input parameters. This function uses non-structure parameters.

 Syntax:

int CANConfigBySJA1000Reg(char BaudType, char BT0,

char BT1, char *AccCode,

char *AccMask)

 Parameter:

BaudType: [input] The baud of CAN controller.

 BT0: [input] The user-defined baud.

BT1: [input] The user-defined baud.

* AccCode: [output] The address of a variable used to obtain the

acceptance code of SJA1000. The first element is the LSB

of the AccCode and the forth is the MSB of the AccCode.

* AccMask: [output] The address of a variable used to obtain the

acceptance mask of SJA1000. The first element is the LSB

of the AccMask and the forth is the MSB of the AccMask.

For the more information about these parameters, please refer to the

functions SetCANBaud() and SetCANMask().

 Return:

_NO_ERR: OK.

_CAN_CHIP_SOFT_RESET_ERR: The SJA1000 can’t be reset by the

software. The CAN controller may be damaged.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 142

5.1.46 EnableSJA1000

 Description:

Use this function to activate the SJA1000. Afterwards, users can

send/receive CAN messages by other functions.

 Syntax:

void EnableSJA1000(void)

 Parameter:

None

 Return:

None

5.1.47 DisableSJA1000

 Description:

Call the function DisableSJA1000() to disable the SJA1000. If users

want to enable the SJA1000 again, the configuration of the SJA1000

must be don first.

 Syntax:

void DisableSJA1000(void)

 Parameter:

None

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 143

5.1.48 GetCANStatus

 Description:

Obtains the status register of the SJA1000.

 Syntax:

int GetCANStatus(void)

 Parameter:

None

 Return:

The return codes are the value of the status register of the SJA1000,

and are described below.

Bit NO. Description

7 (MSB) Bus status. 1 for bus off, 0 for bus on.

6 Error status. 1 for at least one error, 0 for OK.

5 SJA1000 Transmit status. 1 for transmitting, 0 for idle.

4 SJA1000Receive status. 1 for receiving, 0 for idle.

3 SJA1000 Transmit complete status. 1 for complete, 0 for incomplete.

2 SJA1000 Transmit buffer status. 1 for released, 0 for locked

1 Data overrun status. 1 for SJA1000 reception buffer overrun, 0 for OK.

0 (LSB) Receive buffer status. 1 for at least one message stored in the SJA1000

reception buffer, 0 for empty.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 144

5.1.49 ClearDataOverrunStatus

 Description:

When the data overrun status is obtained by using the function

GetCANStatus(), call this function to clean this status.

 Syntax:

void ClearDataOverrunStatus(void)

 Parameter:

None

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 145

5.1.50 SendCANMsg

 Description:

Sends a CAN message to the software transmission buffer. When

the CAN bus is idle, this CAN message will be send to the CAN

network.

 Syntax:

int SendCANMsg(char Mode, unsigned long MsgID, char RTR,

char DataLen, char *Data)

 Parameter:

Mode: [input] 0 for 11-bit message ID, 1 for 29-bit message ID.

MsgID: [input] CAN message ID.

RTR: [input] 0 for normal messages, 1 for remote-transmit-request

messages. As the value is 1, the parameter *Data is useless.

DataLen: [input] The data length of a transmitted CAN message. The

maximum value is 8.

*Data: [input] The start address of a buffer used to store the transmitted

data of a CAN message.

 Return:

_NO_ERR: OK.

_SOFT_BUF_FULL: The transmission software buffer is full. Users

need to transmit the CAN message later, or use the function

ClearTxSoftBuffer() to clean the CAN transmission buffer.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 146

5.1.51 ClearTxSoftBuffer

 Description:

Call this function to clean the transmission software buffer of the

CAN messages.

 Syntax:

void ClearTxSoftBuffer(void)

 Parameter:

None

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 147

5.1.52 GetCANMsg

 Description:

Obtain a received CAN message from the software buffer.

 Syntax:

int GetCANMsg(char *Mode, unsigned long *MsgID, char *RTR,

char *DataLen, char *Data, unsigned long *UpperTime,

unsigned long *LowerTime)

 Parameter:

*Mode: [output] The address of a variable used to get the mode of a

CAN message. If the value is 0, the received CAN message is

11-bit-ID CAN message. The 29-bit-ID CAN message will have

the value 1.

*MsgID: [output] The address of a variable used to get the CAN

message ID.

*RTR: [output] The address of a variable used to obtain the status of this

CAN message. 0 for the remote-transmit-request message, 1 for

the normal message.

*DataLen: [output] The address of a variable used to obtain the data

length of a CAN message. The range of this value is 0~8.

*Data: [output] The start address of a buffer used to get the data of a

CAN message. Users need to put an 8-byte array in this filed.

*UpperTime: [output] The address of a variable used to obtain the

higher 32-bit time stamp of a CAN message.

*LowerTime: [output] The address of a variable used to obtain the lower

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 148

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 149

32-bit time stamp of a CAN message. The unit of

UpperTime and LowerTime are 0.1ms.

 Return:

_NO_ERR: OK.

_RX_SOFT_BUF_EMPTY: There is no message stored in the reception

software buffer.

_SOFT_BUF_FULL: The reception software buffer of the CAN

messages is full. Use the function ClearRxSoftBuffer() to clean

the status when receiving the return code.

5.1.53 ClearRxSoftBuffer

 Description:

Call this function to clean the reception software buffer of the CAN

messages.

 Syntax:

void ClearRxSoftBuffer(void)

 Parameter:

None

 Return:

None

5.1.54 RxMsgCount

 Description:

Call this function to know how many available CAN messages

stored in the reception software buffer.

 Syntax:

int RxMsgCount(void)

 Parameter:

None

 Return:

The return code is the number of the CAN messages stored in the

reception software buffer.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 150

5.1.55 ChcekTxStatus

 Description:

Checks if the CAN controller successfully sends the CAN message.

 Syntax:

int CheckTxStatus(void)

 Parameter:

None

 Return:

The value 1 means that the CAN controller can’t successfully send the

CAN message to the network and the value 0 is for no error.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 151

5.1.56 AddCyclicTxMsg

 Description:

Adds a cyclic transmission message into the firmware of the board.

Afterwards, users can use the functions EnableCyclicTxMsg() and

DelectCyclicTxMsg() to enable or disable this cyclic transmission

message. The maximum addable number of the transmission

messages is 5. After adding a cyclic transmission message, the handle

for this message will be returned. The less value of handle indicates the

higher priority of the cyclic transmission messages. If there are two

cycle transmission messages need to be sent at the same time, the

higher priority message will be sent first.

 Syntax:

int AddCyclicTxMsg(char Mode, unsigned long MsgID, char RTR,

char DataLen, char *Data,

unsigned long TimePeriod,

unsigned long TransmitTimes,

unsigned char *Handle)

 Parameter:

Mode: [input] 0 for 11-bit message ID, 1 for 29-bit message ID.

MsgID: [input] The CAN message ID.

RTR: [input] 0 for transmitting the remote-transmit-request message, 1

for transmitting the normal message. As this bit is 1, the

parameter *Data is useless.

DataLen: [input] The data length of the CAN message. The maximum

value is 8.

*Data: [input] The start address of the data array of a CAN message.

The maximum length of the Data array is 8 bytes.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 152

TimePeriod: [input] The time period for the cyclic transmission. This

parameter is formatted by 0.1ms. The minimum value is 5.

TransmitTimes: [input] The transmission times for the cyclic

transmission. After enabling the transmission, the

message will be sent for specified times. If the value of

the parameter is 0, the transmission goes cyclically

until disabling the cyclic transmission.

*Handle: [output] The address of a variable is used to get the handle of

a cyclic transmission. When users would like to enable or

disable the specified transmission, this value is needed.

 Return:

_NO_ERR: OK

_CYCLIC_CONFIG_ERR: The applied cyclic transmission message

number is more than 5, or the parameter time period is less

than 5 (0.5ms).

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 153

5.1.57 DeleteCyclicTxMsg

 Description:

Removes the specified cyclic transmission message added by the

function AddCyclicTxMsg().

 Syntax:

int DeleteCyclicTxMsg(unsigned char Handle)

 Parameter:

Handle: [input] The handle of the cyclic transmission message which is

obtained by AddCyclicTxMsg() function.

 Return:

_NO_ERR: OK

_CYCLIC_HANDLE_ERR: The handle value can’t be found in the cyclic

transmission engine.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 154

5.1.58 EnableCyclicTxMsg

 Description:

Enables the cyclic transmission message added by the function

AddCyclicTxMsg(). After calling this function, the specified cyclic

transmission message will be transmitted.

 Syntax:

int EnableCyclicTxMsg(unsigned char Handle)

 Parameter:

Handle: [input] The handle of the cyclic transmission message which is

obtained by the function AddCyclicTxMsg().

 Return:

_NO_ERR: OK

_CYCLIC_HANDLE_ERR: The handle value can’t be found in the cyclic

transmission engine.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 155

5.1.59 EnableCyclicTxMsgWithTimes

 Description:

Enables the cyclic transmission message added by the function

AddCyclicTxMsg() with the specified times. After calling this function,

the specified cyclic transmission message will be transmitted.

 Syntax:

int EnableCyclicTxMsgWithTimes(unsigned char Handle,

unsigned long TransmitTimes)

 Parameter:

Handle: [input] The handle of the cyclic transmission message which is

obtained by the function AddCyclicTxMsg().

TransmitTimes: [input] The cyclic message number which will be

transmitted. After enabling the transmission, the

message will be sent for specified times. If the value of

the parameter is 0, the transmission goes cyclically until

disabling the cyclic transmission.

 Return:

_NO_ERR: OK

_CYCLIC_HANDLE_ERR: The handle value can’t be found in the cyclic

transmission engine.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 156

5.1.60 GetRestCyclicTxCnt

 Description:

This function returns the rest number of the cyclic messages which

will not be transmitted. If users configure the cyclic message with the

specified times or use the function EnableCyclicTxMsgWithTimes() to

start the cyclic transmission. Calling this function can obtain how many

cyclic messages are not sent to the CAN bus.

 Syntax:

int GetRestCyclicTxCnt(unsigned char Handle,

unsigned long *RestTimes)

 Parameter:

Handle: [input] The handle of the cyclic transmission message which is

obtained by the function AddCyclicTxMsg().

*RestTimes: [output] The rest number of the cyclic messages which will

not be transmitted.

 Return:

_NO_ERR: OK

_CYCLIC_HANDLE_ERR: The handle value can’t be found in the cyclic

transmission engine.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 157

5.1.61 DisableCyclicTxMsg

 Description:

Disable a cyclic transmission message which is enabled by

EnableCyclicTxMsg() function before.

 Syntax:

int DisableCyclicTxMsg(unsigned char Handle)

 Parameter:

Handle: [input] The handle of the cyclic transmission message which is

obtained by the function AddCyclicTxMsg().

 Return:

_NO_ERR: OK

_CYCLIC_HANDLE_ERR: The handle value can’t be found in the cyclic

transmission engine.

5.1.62 ResetCyclicTxBuf

 Description:

Cleans the software buffer of the cyclic transmission engine. After

calling this function, the transmission of all cyclic messages are stopped,

and all of the cyclic messages are removed from the cyclic transmission

engine.

 Syntax:

void ResetCyclicTxBuf(void)

 Parameter:

None

 Return:None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 158

5.1.63 SystemHardwareReset

 Description:

Uses this function to reset the hardware of the

PISO-CM100U/PCM-CM100.

 Syntax:

void SystemHardwareReset(void)

 Parameter:

None

 Return:

None

5.1.64 SystemInit

 Description:

Use this function to initiate the DPRAM, LEDs, cyclic transmission

engine, CAN transmission software buffer, and CAN controller.

 Syntax:

void SystemInit(void)

 Parameter:

None

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 159

5.1.65 GetLibVer

 Description:

Gets the version of the firmware library.

 Syntax:

int GetLibVer(void)

 Parameter:

None

 Return:

The return code is the version of the firmware library. For example: If

100(hex) is return, it means driver version is 1.00.

5.1.66 RefreshWDT

 Description:

Call this function to refresh the watchdog timer of the

PISO-CM100U/PCM-CM100. When users design the user-defined

firmware, this function must be called where the users’ procedure may

have a processed period more than 500ms. If the function

RefreshWDT() is not called in 800ms, the CPU of the board will be

reset.

 Syntax:

void RefreshWDT(void)

 Parameter:

None

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 160

5.1.67 UserInitFunc <must be called once>

 Description:

When users design the user-defined firmware, this callback

function must be used. Users can put some procedures into this

function. These procedures are those which will be executed only one

time in the user-defined firmware. When the CPU of the

PISO-CM100U/PCM-CM100 boots up, the firmware library will call this

callback function once.

 Syntax:

void UserInitFunc(void)

 Parameter:

None

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 161

5.1.68 UserLoopFunc <must be called once>

 Description:

When users design the user-defined firmware, this callback

function must be used. Users can put their main procedures into this

function. The main procedure will be cyclic executed as soon as

possible. The time period is correlated with the complexity of the users’

main procedure. When the CPU of the PISO-CM100U/PCM-CM100

boots up, the firmware library will call the function UserInitFunc() once

and then call the function UserLoopFunc() cyclically until the CPU of the

PISO-CM100U/PCM-CM100 is turned off. It is not allowed to put an

infinite loop in this function.

 Syntax:

void UserLoopFunc(void)

 Parameter:

None

 Return:

None

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 162

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 163

5.2 Firmware Library Return Codes Troubleshooting

If the default firmware is used, users do not need to read this section.

Return
Code

Error ID Troubleshooting

-19 _SET_TIME_ERROR
1. Check the time format of the input

parameters.

-18 _SET_DATE_ERROR
1. Check the date format of the input

parameters.

-9 _ACCESS_NVRAM_FAILE
1. Try it again.
2. Call your distributor to solve this problem.

0 _NO_ERR OK

1 _COUNT_DOWN_TIMER_TIME_UP
1. The countdown timer started by users is

timeout.

101 _CAN_CHIP_SOFT_RESET_ERR
1. Call SJA1000HardwareReset(), and try it

again.
2. Call your distributor to solve this problem

102 _CAN_CHIP_CONFIG_ERR
1. Check the parameters of baud, BT0,

BT1, acceptance code, and acceptance
mask.

103 _RX_SOFT_BUF_EMPTY
1. Wait for a while and call the function

again.

104 _SOFT_BUF_FULL

1. Use the function ClearTxSoftBuffer() or
the function ClearRxSoftBuffer() to clear
the status of the buffer overflow.

2. Reduce the bus loading of the CAN
network.

105 _DPRAM_WRITE_ERR
1. Wait for a while and call the function

again.
2. Call your distributor to solve this problem

106 _DPRAM_READ_ERR
1. Wait for a while and call the function

again.
2. Call your distributor to solve this problem.

107 _DPRAM_OVER_RANGE
1. Check the address or space range of the

written DPRAM.

108 _NO_DPRAM_CMD
1. Wait for a while and call the function

again.

109 _CYCLIC_CONFIG_ERR

1. Check if users already use 5 cyclic
messages.

2. Set the parameters TimePeriod to be
more than 5.

110 _CYCLIC_HANDLE_ERR 1. Check the parameter Handle.

111 _EEPROM_OVER_RANGE
1. Check the address or space range of

written EEPROM.

112 _EEPROM_ACCESS_ERROR
1. Wait for a while and call the function

again.
2. Call your distributor to solve this problem.

Table 5.6 Return Code Troubleshooting

Note: If users’ problems can’t be fixed after following the recommended

methods. Please contact your distributor or email to

service@icpdas.com to solve the problem.

mailto:service@icpdas.com

6 Application Programming

In this chapter, the program skills about how to use the default firmware and

the design user-defined firmware are shown. Section 6.1 describes the program

basic architecture of an application and briefs some demo programs. Section 6.2

introduces the CANUtility tool. It is a useful free tool for monitoring and accessing

the CAN network. Furthermore, when users want to update the default firmware

or download user-defined firmware into the PISO-CM100U/PCM-CM100. This

tool must be used. Section 6.3 gives a profile about how to design the

user-defined firmware, and the corresponding application on the Windows

platform. Some demo programs for the user-defined firmware are also shown.

Section 6.4 provides two ways to debug the user-defined firmware. If users just

use the default firmware, the Section 6.3 and 6.4 can be ignored.

6.1 Windows Programming With Default Firmware

This section is only for the default firmware. It is useless if users want to

design the user-defined firmware. The figure 6.1 presents the “Send CAN

Message” procedure. When users want to design their application by using the

APIs of CM100.dll on the Windows platform, this flowchart may be a good

reference. The figure 6.2 is a standard procedure for receiving a CAN messages.

This procedure let users obtain the CAN messages from the CAN bus easily. If

users need to send some specified CAN messages every period of time, the

flowchart shown in the figure 6.3 may give a good example. The figure 6.4 shows

the flowchart to send and receive CAN messages in one process or thread.

Because it is impossible for the CAN board to be accessed by more than one

APIs of the CM100.dll at the same time, the flowchart of the figure 6.4 can be a

good reference. Owing to these 4 flowcharts, it may satisfy most application of

the users’ program of the PC with the default firmware of the

PISO-CM100U/PCM-CM100. Following these principles can help users to build

their application easier and faster. When users want to design the Windows

program, the functions, CM100_ActiveBoard(), CM100_Init(), and

CM100_Config(), are only called once when the program starts. If the program

needs to be terminated, call the function CM100_CloseBoard() once to release

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 164

the system resource.

Note: It is impossible to access the same CAN board with more than two

procedure or threads. Users need to confirm the completion of the API of

the CM100.dll before calling a next API of the CM100.dll.

Figure 6.1 Flowchart of Sending CAN Massages

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 165

Figure 6.2 Flowchart of Receiving CAN Massages

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 166

Figure 6.3 Flowchart of Cyclic Transmitting CAN Massages

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 167

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 168

Figure 6.4 Flowchart of sending and receiving CAN Massages

Briefs of the demo programs:

All of demo programs described here need to assist with the default firmware

of the PISO-CM100U/PCM-CM100. Each demo can’t work normally if the DLL

driver would not be installed correctly. During the installation process of the DLL

driver, the installation program also copy the demo programs to the proper

position which is based on the path selected before. After installing the driver

installation, the related demo programs, development library and declaration

header files for different development environments are presented as follows.

 PISO-CM100U/PCM-CM100 demo

programs

 For default firmware

 For Borland C++ Builder 3

 Folder for library

 Demo for getting CAN messages

 Demo for sending CAN messages

 Demo for sending CAN messages cyclically

 for Visual C++ 6.0

 Folder for library

 Demo for getting CAN messages

 Demo for sending CAN messages

 Demo for sending CAN messages cyclically

 For Visual Basic 6.0

 Folder for library

 Demo for getting CAN messages

 Demo for sending CAN messages

 Demo for sending CAN messages cyclically

|--\Demos

|--\For_Default_Firmware

 |--\BCB

 |--\Library

 |--\ReceiveMsg

 |--\TransmitMsg

 |--\TransmitMsgCyclically

|--\VC++

 |--\Library

 |--\ReceiveMsg

 |--\TransmitMsg

 |--\TransmitMsgCyclically

|--\VB

 |--\Module

 |--\ReceiveMsg

 |--\TransmitMsg

|--\TransmitMsgCyclically

 |--\Default_Firmware

 Default firmware copy

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 169

ReceiveMsg:

The ReceiveMsg demo is a sample example for demonstrating about how

to receive CAN messages from CAN network by using the APIs of the

CM100.dll with the default firmware. The dialog of this demo is shown in the

follow figure.

Select the CAN baud and board No. of the specified

PISO-CM100U/PCM-CM100. Click the “Active Board” button to start this demo.

Afterwards, the title of the dialog will display the name of the activated board.

The SJA1000 status shown in the status filed will be updated every 500ms.

Click the “Clear Status” button when the buffer of the SJA1000 is overflow. If

there is any CAN message received by the PISO-CM100U/PCM-CM100,

users need to click “Receive” button to get these CAN messages from the

reception software buffer. Of cause, users can put this part of the demo codes

into the timer function or thread. The action of the receiving messages will

always be checked by the program instead of the manual operation. If users

need to clean the message list in the bottom of this dialog, click the “Clear List”

button to do this.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 170

TransmitMsg:

This demo is very useful if users want to send CAN messages. The dialog

of the TransmitMsg demo is shown in the following figure.

As the description above, select the CAN baud and board No. of the

specified PISO-CM100U/PCM-CM100 firstly. Then, click the “Active Board”

button to start this demo. The title of the dialog will display the name of the

activated board. After filling all parameters of a CAN message, users can click

the “Send” button to send it out.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 171

TransmitMsgCyclically:

The dialog is shown as above figure. Firstly, select board No., baud and

click the “Active” button to activate the specified PISO-CM100U/PCM-CM100.

Secondly, configure all parameters of the cyclic CAN message. Be careful that

the parameter Period is the unit of 0.1ms. The value of this parameter must be

more than 5. Click the “Add” button to add this message into the cyclic

transmission engine. This message will also be shown in the message list in

the bottom of the dialog. Afterwards, users can select a cyclic message listed

in the message list, and click “Enable” button to start the message

transmission. If users want to stop it, select it from the message list, and click

the “Disable” button. The action of deleting a cyclic message from cyclic

transmission engine is similar with the action of disable a cyclic transmission.

Just select the cyclic message from the message list, and click the “Delete”

button.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 172

6.2 Introduction of CANUtility Tool

The CANUtility is designed for the CAN boards of the ICP DAS. It provides

useful functions when users want to debug users’ CAN application, monitor

CAN devices and access a CAN network. Users can find it in the folder of

PISO-CM100U where you installed the driver before. The default path is

“c:\ICPDAS\PISO-CM100U\”. When you execute the CANUtility.exe, the

Configuration dialog is popped up below. All CAN board searched by the

CANUtility.exe will be listed in the Board No. filed. If users do not want to do

the configuration, click the button “ ” to skip this procedure. Here, select

PISO-CM100 for the demonstration.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 173

Because the PISO-CM100 has only one CAN port, the Port2, Port3 and

Port4 are disabled. Check the checkbox Port1 to enable it. Afterwards, you can

modify the parameters of the acceptance code, acceptance mask and baud.

The description of the function CM100_Config in chapter 4 can give a good

reference about how to set the acceptance code and acceptance mask.

If the proper baud can’t be found in the Baud list, select the “User Define”

to define special baud by using the BT0 and BT1 of the SJA1000. In this case,

users need to study the datasheet of the SJA1000 to know how to use the

registers BT0 and BT1 to configure the baud.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 174

After finishing the configuration and clicking the button “OK”, the main

screen of the CANUtility is displayed. The title of the CANUtility shows the

activated board name. The status of this board is shown on the status bar in

the bottom of the window.

Users can set the parameters of a transmitted CAN message, and click

Add button to put it into the list. If users just need to send one CAN message,

please let the Timer filed to be 0 or empty.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 175

If the cyclic transmission messages are demanded, users can configure

the message parameters with the timer filed.

After finishing the configuration, click the button “Add” to add the cyclic

transmission message into the list.

When the CAN messages are added into the list, the PISO-CM100 will not

send them to the CAN network until users click the button “Send”. Therefore,

select the CAN messages which you want to send from the list, and click the

button “Send” to send it.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 176

Similarly, select the cyclic transmission messages from the list, and click

button “Send” to send the cyclic transmission. Afterwards, the status of the

sent cyclic transmission message is changed to “Running”, and the button

“Send” is also changed to the button “Pause”. If users want to stop the

transmission, select the sent cyclic transmission message from the list, and

click the button “Pause” to stop it.

If any CAN message is obtained by the CANUtility, it will be put into the

reception list in the bottom of the window. The filed “Time Stamps” shows the

time when a message is got. The time base is the boot up time of the CPU of

the PISO-CM100U (Take a note that the board which has no CPU uses the

system time to be the time stamp while the kernel driver gets this message.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 177

Users can click the button “Rx Pause” to pause the reception of the CAN

messages. Or click this button again to continue the reception. Click the button

“Clear” to empty the reception list. The button “Goto Last” is used to move the

scroll bar of the reception list to the last record of the received CAN message.

If the button “Scrolling” is activated as the following figure, the reception list will

be scrolled automatically when any CAN message is received. If the button

“Scrolling” is inactivated, the auto-scrolling stops, but the received CAN

messages are still put into the reception list.

If users want to modify the parameters of the CAN message added before,

select the specified CAN message from the list. Then the configuration fileds

will be filled with the parameters of the specified CAN message.

Users can modify the parameters in these configuration fields. Then, click

the button “Modify” to modify it.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 178

The CAN utility also provides the special functions when reading the CAN

data. For example, some CAN messages with specified message ID need to

be notified, or some bytes of the data filed of a CAN message need to be

transferred to the ASCII characters. These demands can be achieved by using

the functions of the Configuration item of the menu. The Board Configuration

function let users modify the configuration of the specified board. It is the same

as the dialog popped up when the CANUtility.exe is starting. The Data Format

function provides a human interface to set the data format for each byte of the

data filed of a specified CAN message. The Software ID Mask function is

similar with the functions of the acceptance code and acceptance mask of

Configuration dialog popped up in the start of the CANUtility.exe. The former

uses software method to filter the useless CAN messages, the latter uses

hardware method to do this. The feature of the Software ID Mask is that it

allows users to filter any CAN messages which you wouldn’t need by select the

“Un Pass” and the interesting messages by select the “To Pass”. It is more

flexible than setting the acceptance code and acceptance mask. But its

performance is not good enough as the hardware message filter.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 179

After clicking the item of the Data Format, the Data Converter dialog is

popped up. Users can select the port No. to set the port which will transfer the

received messages to the specified data format.

When finishing the settings of the data format for the specified message

ID, click Add button to save the configuration. Here provides three kinds of

data format, Hex., Dec. and ASCII. The default setting for received CAN

messages is hexadecimal format.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 180

If users want to cancel the configuration which is set before, select the

record from the list firstly, then click “Delete” button to remove it.

The “Software ID Mask” function is executed in the “ID Masker” dialog.

Select the port No. and the “Pass” type firstly. Fill the message IDs of the CAN

messages which you want to drop. Finally, click “Add” button to store the

result.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 181

Select the record from the list and click Del button to remove the record

added before. The maximum content of the list is 20 records.

Besides the functions described above, the CANUtility allows users to

save and load the configuration parameters by applying the Load

Configuration or Save Configuration of the “File” item in the menu. The Save

Reception List function helps users to store the records of the received CAN

messages into .txt file. The Update Firmware function let users update the

default firmware or download the user-defined firmware. This function is only

for PISO-CM100U/PCM-CM100 series cards.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 182

When users apply the Update Firmware function, select the specified

board firstly. Only the PISO-CM100U/PCM-CM100, PISO-CPM100U and

PISO-DNM100U series are listed in the Combo box. Click the Update button to

select the proper firmware for the specified board.

Only the .exe file can be downloaded into PISO-CM100U/PCM-CM100

series.

When finishing the download procedure, the Download OK dialog is

popped up. Click the OK button to continue.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 183

If you want to check the version of the CAN Utility, please click the “About”

item of the menu to get the information. The version No. of the CAN Utility you

use may be different with the following picture.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 184

6.3 Debug Tools for User-defined Firmware Programming

If users just apply the default firmware for their application, this section

can be ignored. This section introduces the debug methods when users deign

their firmware. Basically, when users develop the user-defined firmware, the

debug message can be put into the code section of the user-defined firmware

which may have bugs inside. Then, compile the user-defined firmware, and

download it into the PISO-CM100U/PCM-CM100. Owing to check the debug

message, the bugs could be found. The debug methods are shown below.

CM100_DEBUG_MONITOR.exe:

If the functions DebugPrint() is applied in the user-defined firmware. Users

need to check the debug message by using the CM100_Debug_Monitor.exe. It

is displayed as following figure. Users can find it in the Fieldbus CD. The path

is CAN\PCI\PISO-CM100\.

Because of the software architecture of the PISO-CM100U/PCM-CM100,

the CM100_Debug_Monitor.exe is useful only if the PISO-CM100U/

PCM-CM100 is activated. Therefore, this debug program provides the

CM100_ActiveBoard() function and CM100_CloseBoard() function. If users

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 185

want to send the commands to user-defined firmware or restart the

user-defined firmware, they are also provided by CM100_SendCmd() and

CM100_HardwareReset() functions in the CM100_DEBUG_MONITOR.exe

These functions are built in the tool bar as below.

If any other program has activated the specified

PISO-CM100U/PCM-CM100, the functions CM100_ActiveBoard() and

CM100_CloseBoard() of the CM100_DEBUG_MONITOR.exe are not needed

because one PISO-CM100U/PCM-CM100 can be activated by only one

program at the same time. After clicking the CM100_ActiveBoard() function,

the dialog is popped up as below.

Users can select the proper board name and click “Active Board” button to

activate this board. When board is activated, users can use

CM100_SendCmd() function to send command to the user-defined firmware.

CM100_HardwareReset()

CM100_ActiveBoard() and

CM100_CloseBoard()

Separating Function

CM100 SendCmd()
Debugging or Pause

Functions

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 186

The sending command dialog is shown below. Users can key the ASCII string

in the edit box and click the button “Send Command” to the user-defined

firmware. If users need to clean the edit box, use the “Clean” button to do this.

The debugging and pause functions are used to decide if the

CM100_DEBUG_MONITOR.exe shows the received debug messages or not.

If not, the debug messages will be dropped. The separating function is applied

when users want to separate the debug messages. After using this function,

the screen of the CM100_DEBUG_MONITOR.exe is shown below. The end of

content of debug messages will be separated by the equal marks. When

newer debug messages are received by the CM100_DEBUG_MONITOR.exe,

they are put in the end of these equal marks.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 187

7188xw.exe:

The firmware library provides two functions for debugging. The function

GetKbhit() allows users to received a inputted character from 7188xw.exe.

Therefore, users can use this feature to trigger some specified event for

debugging. The function Print() allows users to send debug messages to

7188xw.exe. Then, 7188xw.exe will put these debug messages on the screen

of 7188xw.exe. Before implementing this method, users need to use the debug

cable. Plug the debug cable to the JP2 of PISO-CM100U/PCM-CM100

described in the chapter 2. Connect an available PC COM port with the D-Sub

9-pin connector of debug cable. The situation is shown as following figure.

Then, use Notepad.exe to configure the 7188xw.ini to set the number of

the specified PC COM port which is connected with the debug cable, and

execute the 7188xw.exe. The configuration screen is displayed as following

figure. Users can find the 7188xw.ini and 7188xw.exe in the Field Bus CD. The

path is CAN\PCI\PISO-CM100U\.

C4 means PC COM4. If users

use PC COM1, modify it to C1.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 188

Any keyboard input will be caught by the user-defined firmware via the

GetKbhit() function. The debug messages sent by the function Print() will also

be displayed on the screen of the 7188xw.exe.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 189

6.4 User-defined Firmware Programming

If users just apply the default firmware for their application, this section

can be ignored. This section describes about how to build a user-defined

firmware. A CAN application can be implemented corresponding to the good

cooperation of the Windows application and the user-defined firmware.

Generally speaking, the user-defined firmware processes the interpretation of

the CAN communication protocol and the algorithms of sending the required

CAN messages. The Windows program can use the processed data from the

user-defined firmware to implement the applications or shows these data on

the HMI. The windows program can also give a command to the user-defined

firmware for sending the data to the CAN network. The relationship between

Windows applications and the user-defined firmware is shown as the following

figure.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 190

The development procedure of the user-defined firmware

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 191

The development procedure of the corresponding Windows program

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 192

The above two figures shows the basic flowchart of developing the

user-defined firmware and corresponding Windows program. For the

user-defined firmware development, users can create a C/C++ project, and

include the .c files and 186COMM.lib. Put the 4 callback functions in one of

these .c file. Program the codes into these 4 callback functions. If necessary,

build your functions and global variables. Then, compile this project, and you

can get the user-defined firmware. Download it by using the CANUtility.exe

and test it. Afterwards, according to the user-defined firmware, design your

Windows program to communicate with the firmware via the DPRAM access

functions of the CM100.lib and the 186COMM.lib. Besides the DPRAM access

functions, the firmware library supports most APIs for the hardware on the

PISO-CM100U/PCM-CM100, such as the EEPROM accessing, the RTC

access, the timer functions… and so forth.

When you want to design a Windows program, the BCB, VC++, or VB

development environment are needed. Users can refer to the textbook of the

BCB, VC++ or VB for more information about how to use the APIs of the .dll

library in these development environments. The user-defined firmware can be

programmed by the BC/BC++/TC/TC++ development environments. Here, it is

considered that how to build an execution file with the 186COMM.lib by using

the TC++1.01 compiler. Before starting the step-by-step procedures, users

need to install the TC++1.01 compiler and the PISO-CM100U/PCM-CM100

Windows driver. Users can free download the TC++1.01 compiler on the

following website.

http://www.icpdas.com/download/download-list.htm

The PISO-CM100U/PCM-CM100 Windows driver can be found in the

Fieldbus CD or our website. Please refer to the chapter 3 for more details. The

following paragraph is a step-by-step description about how to build the

user-defined firmware.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 193

http://www.icpdas.com/download/download-list.htm

Step1: Create a folder named “MyFirm” in the C disk.

Step2: In the folder MyFirm, create a .c file and name it as “MyFirm.c”. Design

the MyFirm.c file as follows. The 4 callback functions must be used in

user-defined function.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 194

Step3: Copy the 186COMM.lib file and the 186COMM.h file into the MyFirm

folder. Users can find them with version 1.00 in the path

CAN\PCI\PISO-CM100U\Demos\For_User_Defined_Firmware\ver_10

0 in the Fieldbus CD. If there is newest version library, use it for the

user-defined firmware.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 195

Step4: Run the TC++1.01 development environment. Click the “Options\Full

menus” to expand the all functions listed in the menus.

Step5: Click the “Project\Open project…” to create a new project. Input the

project name “MyFirm.PRJ”, and click the OK button to continue.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 196

Step6: Click the “Add” item on the bottom of the TC++1.01 window. Search

all .c file by setting “c:\MyFirm*.c” in the Name field of the popup

window. Use the “Add” button to add the MyFirm’ .c file in to MyFirm

project. Then, change the search command from “c:\MyFirm*.c” to

“c:\MyFirm*.lib” in the Name field. Add the library file 186COMM.lib into

the MyFirm project as the same way.

Step7: After finishing the Step6, the TC++1.01 window will look like as follows.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 197

Step8: Click the “Options/Compiler/Code generation…” to set the compiler

model to the large mode. Click “More…” to set the “Floating point” and

“Instruction Set” parameters, the Emulation and 80186 item will be

used respectively. Then, click the OK button to save the configuration.

Step9: Click the “Option/Debugger...” to set the “Source Debugging” parameter.

Here, select the “None” item for this parameter.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 198

Step10: Click the “Option/Directories...” to set the “Output Directory” parameter.

Here, set the “C:\MyFirm” for the “Output Directory” parameter.

Step11: After finishing the parameters setting, click the “Options/save” to save

this project.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 199

Step12: After finishing the parameters configuration, click the “Compile/build

all” to produce the execution file. Users can find the execution file

named as MyDemo.exe in the MyFirm folder. The warning messages

may occur during the compiling procedure because the INTT

parameters of the UserCANIrqFunc() and UserDPRAMIrqFunc() are

not used. These warnings will not have any affection.

Step13: Execute the CANUtility.exe, and select the “File\Update Firmware” to

download the user-defined firmware.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 200

Step14: Select the board name, click the “Update” button, and find the

MyFirm.exe file from the dialog.

Step15: When finishing, the Download OK messages is shown.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 201

Step16: Check the 7188xw.ini. Here, use the PC COM4 to connect the debug

cable of the PISO-CM100U/PCM-CM100-D/T. Set the COM No. value

to “C4” for the PC COM4. If users use COM1, set the value to “C1”.

The 7188xw.ini and 7188xw.exe can be found in the driver installation

path. The default is “C:\ICPDAS\PISO-CM100U\”.

Step17: Connect the debug cable introduced in the chapter 2 with the CAN

board. Run the 7188xw.exe.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 202

Step18: After finishing the user-defined firmware, run the VC++ 6.0 to set up a

corresponding Windows program. Select the “File/New…” to create a

project.

Setp19: Use the “MFC AppWizard (exe) for the project. The project name and

location are given as following figure. Click the OK button to continue.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 203

Step20: Set the project by using the following parameters, and click the Finish

button to continue.

Step21: The relative project information is shown in the popped up dialog.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 204

Step22: Add a button to the Windows program. Select the button icon from the

tool box, drag and drop the mouse pointer to build a button.

Step23: Select the button, and key the characters “Init Board” directly. Then

the property dialog is popped up. Afterwards, close the property

dialog.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 205

Step24: Double click the button “Init Board”, and key the characters “InitBoard”

for creating a member function. Click the OK button to continue.

Step25: Add the codes in the member function.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 206

Step26: Repeater Step 22 to Step 25 to create another button named as

“SendCmd”, and add a member function named as “SendCmd” for

this button.

Step27: The codes of the member function are as follows.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 207

Step28: Copy the cm100.h and cm100.lib files to the folder of the project. You

can find the two files in the PISO-CM100U driver installation path.

Step29: In order to add the CM100.lib into your project. Right click on the

“Source File” item. Select the “Add Files to Folder” item.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 208

Step30: Select the “Files of type” to the “Library Files (.lib)” first. Add the

cm100.lib into your project. Click the OK button to continue.

Step31: In the space of the toolbar, right click to add the “Build” toolbar. Select

the “Win32 Release”.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 209

Step32: Select the “Build/Rebuild All” in the menu to compile the project.

Step33: Set the CAN board ID to 0, and run the MyWinProg.exe in the Release

folder of the project. Click the “Init Board” button first. Then, use the

“SendCmd” button to send the command to the user-defined

firmware.

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 210

PISO-CM100U/PCM-CM100 User’s Manual (Version: 1.08 August 15, 2012) 211

Step34: Each click on the “SendCmd” button of the Windows program sends a

command to the user-defined firmware, and the command will be

caught by the user-defined firmware. The first two lines of the debug

information are shown by the CAN board system. The other debug

messages are shown by the user-defined firmware.

	1 General Information
	1.1 Introduction
	1.2 Features
	1.3 Specifications
	1.4 Product Check List

	2 Hardware Configuration
	2.1 Board Layout
	2.2 Jumper Selection
	2.3 Connector Pin Assignment
	2.3.1 5-pin screw terminal connector
	2.3.2 9-pin D-sub male connectors
	2.3.3 Wire connection

	2.4 LED Indicator & Operation Mode
	2.5 Hardware Installation

	3 Driver Introduction
	3.1 Software Installation
	3.2 Software Architecture

	4 APIs for the PC’s Program
	4.1 Windows API Definitions and Descriptions
	4.1.1 CM100_GetDllVersion
	4.1.2 CM100_GetBoardInf
	4.1.3 CM100_TotalBoard
	4.1.4 CM100_TotalCM100Board
	4.1.5 CM100_TotalDNM100Board
	4.1.6 CM100_TotalCPM100Board
	4.1.7 CM100_GetCM100BoardSwitchNo
	4.1.8 CM100_GetDNM100BoardSwitchNo
	4.1.9 CM100_GetCPM100BoardSwitchNo
	4.1.10 CM100_GetCardPortNum
	4.1.11 CM100_ActiveBoard
	4.1.12 CM100_CloseBoard
	4.1.13 CM100_BoardIsActive
	4.1.14 CM100_ AdujstDateTime
	4.1.15 CM100_Reset
	4.1.16 CM100_Init
	4.1.17 CM100_HardwareReset
	4.1.18 CM100_Check186Mode
	4.1.19 CM100_Status
	4.1.20 CM100_AddCyclicTxMsg
	4.1.21 CM100_DeleteCyclicTxMsg
	4.1.22 CM100_EnableCyclicTxMsg
	4.1.23 CM100_DisableCyclicTxMsg
	4.1.24 CM100_OutputByte
	4.1.25 CM100_InputByte
	4.1.26 CM100_IsTxTimeout
	4.1.27 CM100_SetSystemMsg
	4.1.28 CM100_ClearSoftBuffer <For default firmware>
	4.1.29 CM100_ClearBufferStatus <For default firmware>
	4.1.30 CM100_ClearDataOverrun <For default firmware>
	4.1.31 CM100_Config <For default firmware>
	4.1.32 CM100_ConfigWithoutStruct <For default firmware>
	4.1.33 CM100_RxMsgCount <For default firmware>
	4.1.34 CM100_ReceiveMsg <For default firmware>
	4.1.35 CM100_ReceiveWithoutStruct <For default firmware>
	4.1.36 CM100_SendMsg <For default firmware>
	4.1.37 CM100_SendWithoutStruct <For default firmware>
	4.1.38 CM100_SJA1000Config <For user-defined firmware>
	4.1.39 CM100_EnableSJA1000 <For user-defined firmware>
	4.1.40 CM100_DisableSJA1000 <For user-defined firmware>
	4.1.41 CM100_DPRAMInttToCM100 <For user-defined firmware>
	4.1.42 CM100_DPRAMWriteByte <For user-defined firmware>
	4.1.43 CM100_DPRAMWriteWord <For user-defined firmware>
	4.1.44 CM100_DPRAMWriteDword <For user-defined firmware>
	4.1.45 CM100_DPRAMWriteMultiByte <For user-defined firmware>
	4.1.46 CM100_DPRAMReadByte <For user-defined firmware>
	4.1.47 CM100_DPRAMReadWord <For user-defined firmware>
	4.1.48 CM100_DPRAMReadDword <For user-defined firmware>
	4.1.49 CM100_DPRAMReadMultiByte <For user-defined firmware>
	4.1.50 CM100_DPRAMMemset <For user-defined firmware>
	4.1.51 CM100_ReceiveCmd <For user-defined firmware>
	4.1.52 CM100_SendCmd <For user-defined firmware>
	4.1.53 CM100_InstallUserISR <For user-defined firmware>
	4.1.54 CM100_RemoveUserISR <For user-defined firmware>

	4.2 Windows API Return Codes Troubleshooting

	5 Functions of Firmware Library
	5.1 Firmware Library Definitions and Descriptions
	5.1.1 L1Off
	5.1.2 L1On
	5.1.3 L2Off
	5.1.4 L2On
	5.1.5 DPRAMInttToHost
	5.1.6 UserDPRAMIrqFunc <must be called once >
	5.1.7 DPRAMWriteByte
	5.1.8 DPRAMWriteWord
	5.1.9 DPRAMWriteDword
	5.1.10 DPRAMWriteMultiByte
	5.1.11 DPRAMReadByte
	5.1.12 DPRAMReadWord
	5.1.13 DPRAMReadDword
	5.1.14 DPRAMReadMultiByte
	5.1.15 DPRAMMemset
	5.1.16 DPRAMReceiveCmd
	5.1.17 DPRAMSendCmd
	5.1.18 DebugPrint <assist with CM100_DEBUG_MONITOR.EXE>
	5.1.19 GetKbhit <assist with debug cable and 7188xw.exe>
	5.1.20 Print <assist with debug cable and 7188xw.exe>
	5.1.21 GetTime
	5.1.22 SetTime
	5.1.23 GetDate
	5.1.24 SetDate
	5.1.25 GetWeekDay
	5.1.26 ReadNVRAM
	5.1.27 WriteNVRAM
	5.1.28 GetTimeTicks100us
	5.1.29 GetTimeTicks
	5.1.30 DelayMs
	5.1.31 CM100_InstallUserTimer
	5.1.32 T_StopWatchXXX series functions
	5.1.33 T_CountDownTimerXXX series functions
	5.1.34 CM100_EEPROMReadByte
	5.1.35 CM100_EEPROMReadMultiByte
	5.1.36 CM100_EEPROMWriteByte
	5.1.37 CM100_EEPROMWriteMultiByte
	5.1.38 UserCANIrqFunc <must be called once>
	5.1.39 SJA1000HardwareReset
	5.1.40 SetCANBaud
	5.1.41 GetCANBaud
	5.1.42 SetCANMask
	5.1.43 GetCANMask
	5.1.44 CANConfig
	5.1.45 CANConfigBySJA1000Reg
	5.1.46 EnableSJA1000
	5.1.47 DisableSJA1000
	5.1.48 GetCANStatus
	5.1.49 ClearDataOverrunStatus
	5.1.50 SendCANMsg
	5.1.51 ClearTxSoftBuffer
	5.1.52 GetCANMsg
	5.1.53 ClearRxSoftBuffer
	5.1.54 RxMsgCount
	5.1.55 ChcekTxStatus
	5.1.56 AddCyclicTxMsg
	5.1.57 DeleteCyclicTxMsg
	5.1.58 EnableCyclicTxMsg
	5.1.59 EnableCyclicTxMsgWithTimes
	5.1.60 GetRestCyclicTxCnt
	5.1.61 DisableCyclicTxMsg
	5.1.62 ResetCyclicTxBuf
	5.1.63 SystemHardwareReset
	5.1.64 SystemInit
	5.1.65 GetLibVer
	5.1.66 RefreshWDT
	5.1.67 UserInitFunc <must be called once>
	5.1.68 UserLoopFunc <must be called once>

	5.2 Firmware Library Return Codes Troubleshooting

	6 Application Programming
	6.1 Windows Programming With Default Firmware
	6.2 Introduction of CANUtility Tool
	6.3 Debug Tools for User-defined Firmware Programming
	6.4 User-defined Firmware Programming

